CHAPTER 2
Condition and Trends of Ecosystems Services and Human Well-Being

2.1 Approach

Selection of Services and Scope of Analysis

The condition and trends component of this assessment focuses on ecosystem services and human well-being in the Gariep basin since 1993. Each of the SAfMA studies agreed to assess two core ecosystem services: water and food. An additional ecosystem property assessed across all SAfMA studies is ecosystem integrity or biodiversity, which is viewed as a basic condition for ecosystem function and continued ecosystem service delivery. This assessment focuses on these principle ecosystem services. Four services of particular importance in the Gariep basin are also assessed: energy services, mineral services, air quality, and cultural services. Some of these services are essential for human survival, while others play a significant role in the region's economy or provide employment.

At the basin scale, the condition and trends assessment primarily uses a demand and supply approach. Areas where the supply of ecosystem services does not meet the user demands are identified as areas of potential concern. In addition, we evaluate the outlook for future provision of services. For some services, such as ecosystem integrity, a demand and supply approach is inappropriate, and it is therefore assessed through an evaluation of threats and potential biodiversity losses from changing land use. Furthermore, because human well-being is not necessarily a function of demand and supply of ecosystem services, we also look, where relevant, at the quality of services, access to services, drivers of change in services, and the capacity of ecosystems to continue producing services. At the community level, we conducted a more detailed and contextual investigation of key resources, especially those that contribute to human well-being. We also investigated the trends in those key resources over the past decade, and local people’s coping strategies for dealing with changes in goods and services.

The condition and trends of ecosystems and their services cannot (and should not) be easily separated from the many human response options, coping strategies, and interventions that modify ecosystems and services. As illustrated by the MA’s conceptual framework in Chapter 1, these strategies and interventions can change relationships between drivers, ecosystem services, and human well-being. We identify response options to manage each ecosystem service, including practices adopted by governments, organizations, industry, societies, and individuals to deal with deficiencies in the availability of ecosystem services or the negative consequences of using services. We adapted a classification system for responses from the MA Responses Working Group to assess food services (Millennium Ecosystem Assessment, first review draft, 2004a), but we find it to be generally applicable to other services we assessed. Interventions and strategies to improve benefits from ecosystem services while maintaining ecological integrity and human well-being are generally described as 1) those that target the management of the resource base and state of ecosystem; 2) technological interventions; 3) legal, institutional, and economic policies, and 4) social, behavioural, and cognitive responses, including improvements in knowledge and education.

We first assess each service individually, as services are largely managed on a sectoral basis and data are available correspondingly. In Chapter 3, we examine some of the links between these services and explore ways to address trade-offs. Lastly, the evaluation of the basin’s ability to continue delivering services requires that assumptions be made about future demand and supply trends. Chapter 4 explores these dynamics qualitatively with a scenario planning approach that poses alternative pathways to the year 2030.
Indicators and Data

Indicator development for this assessment drew extensively from the National State of the Environment Reporting Initiative of the South African Department of Environmental Affairs and Tourism (DEAT 1999). We also consulted a variety of global assessments such as the Pilot Analysis of Global Ecosystems (PAGE) and sectoral analyses of indicator selection (e.g. Walmsley et al. 2001, Walmsley 2002 for water). We used only indicators for which data were reasonably available for the full extent of the study area. The Gariep Basin User Advisory Group provided input regarding the indicator selection and in many cases supplied data.

South African data were derived from sources such as land cover maps and national databases on water, forestry, biodiversity, agriculture, mining, energy, industry, and population. Data were collected at several scales, and included national, provincial, municipality, water management area, quaternary catchment, quarter-degree grid square, and point data. For some analyses, it was necessary to aggregate data at different resolutions to a single scale.

Data for Lesotho were obtained at primarily three scales: national, administrative district, and quaternary catchment. Catchment data for Lesotho and South Africa were extracted from the South African Department of Water Affairs and Forestry’s Water Situation Assessment Model (WSAM) version 3 (Watson, pers. comm.) which allowed for easy integration of data sets. Elsewhere it was necessary to aggregate data or to analyse it at different scales. Because certain datasets for Lesotho were unavailable, and the fact that South Africa comprises the greatest percentage of land area of the Gariep basin, we acknowledge some bias towards a South African perspective in this assessment. Where feasible, we made an effort to balance these contributions and perspectives.

Where data are lacking, uncertainty about relationships is high, or where an assessment of future condition and trends is concerned, models can often play an important role. For example, the WSAM calculates a risk-based water resource, land use, and water use situation assessment for 1995 at the quaternary catchment scale, allowing for a finer-scale analysis of a large river basin than was previously possible. The International Water Management Institute’s (IWMI) model PODIUM (Kamara and Sally 2002) was used to examine future food security and the implications for water resources. These models and others employed in this assessment are likely to benefit from additional data and fine tuning, but nonetheless provide useful insights on a broad scale.

Local Assessments

The Gauteng assessment was pursued as a unique case study. Existing data were synthesized in a similar manner to the approach used in the basin assessment. The Department of Agriculture, Conservation, and Environment (DACE) holds the data sets employed. The exception was an additional survey conducted to assess plant composition and use in residents’ yards.

The three rural community assessments are discussed in detail in a separate report (Shackleton et al. 2004), with select findings highlighted throughout this assessment. At the community assessment sites, the human use of ecosystem services was assessed by means of four complimentary approaches: (i) summaries of literature, (ii) household surveys, (ii) interviews with key informants, and (iv) Participatory Rural Appraisal (PRA) group sessions. Abundance and status of ecosystem services were quantified or ranked on either relative or absolute scales, using PRA approaches, direct measurement via transects and/or interpretation of satellite images (with ground-truthing).
2.2 Human Well-Being

Ecosystem services are fundamental to human well-being, a term that embraces issues such as quality of life, health, social relations, security, and freedom and choice. At the same time, conditions of human well-being can enable or constrain the ability to derive benefits from ecosystems and their services (Figure 2.1). The goal of sustainable development is to attain adequate levels of human well-being without eroding the ecosystems that serve as its very foundation.

While some relationships between ecosystem services and human well-being are familiar – food is essential to nutrition, for example, and water to hygiene – there is less certainty regarding the degree to which ecosystems can be degraded before human well-being declines. This is in part due to differences in requirements and preferences among individuals. Other mediating factors also play a role, such as the nature of people’s livelihoods (if they are less directly connected to ecosystem services, their well-being may be able to sustain higher levels of degradation, at least initially) or a region’s political stability (if the government collapses, their well-being may deteriorate faster in the absence of health care services). Perhaps even less clear is how conditions of human well-being influence people’s ability to maintain ecosystem services.

A standard measure of human well-being, the Human Development Index (HDI), is used as an indicator of the opportunity for people in the Gariep to reach their full potential longevity, knowledge, and standard of living. HDI is a composite value between 0 and 1, with 1 being the highest possible score. South Africa’s HDI in 2001 was 0.684 and ranked 111th worldwide among 175 nations; Lesotho’s was 0.510, ranking it 137th. They are both viewed as “medium-development” countries, while a score of 0.80 or higher delineates the “high-development” nations (UNDP 2003). The variables used to measure HDI may vary, but usually include life expectancy, educational attainment, and income. The six measured components for which data are available at the municipality or provincial scale are income, literacy, life expectancy, unemployment, inequality, and age dependency. Each component is discussed below.

![Figure 2.1](image)

Ecosystem services and constituents of human well-being. There are intrinsic links between ecosystem services and between ecosystem services and human well-being. Provisioning, regulating, and cultural services have direct effects on human well-being, while supporting services underpin the other services. Changes in these services affect human well-being through impacts on security, the basic material needed for a good life, health, and social and cultural relations. They are in turn influenced by and have an influence on the freedoms and choices available to people (adapted from Millennium Ecosystem Assessment 2003).
The community assessments provide an alternative view of human well-being (see Box 2.1). In particular, they highlight the large variation in human well-being, even within the same village. In the Great Fish River study, for example, 17 percent of the community classified themselves as "very poor, those who have almost nothing". Forty-four percent were classified as "struggling", and 30 percent as "better-off". Eight percent of the population were classified as "well-off".

Human Development Index

INCOME

More than half of the population maintains a livelihood off the agricultural sector, though agriculture contributes less than five percent to South Africa's gross domestic product (GDP). The remainder of the population is concentrated around industrialised areas that account for 93 percent of the GDP (Huntley et al. 1989). Consequently, the average GDP per capita is as much as four times higher in industrialised areas (such as Gauteng Province) than in the central rural region (Figure 2.2a). The majority of Basotho (approximately 85 percent) live in rural areas (United Nations 2000), most of which are poor.

UNEMPLOYMENT

Unemployment is very high in most parts of the Gariep basin, reaching 50 percent and higher in the former black homelands in which subsistence farming is the major form of livelihood (Figure 2.2b). Even in the highly industrialised regions, such as Gauteng, the average unemployment rate is 30 percent. The areas with the lowest unemployment rates are the sparsely populated areas in the arid western regions of the basin that are also characterised by large mining activity. Largely due to the high incidence of unemployment, the informal (non-tax paying) sector in South Africa serves as a survival strategy for the poor. In 1990, an estimated 3.4 million people were self-employed in the informal economy throughout South Africa, contributing nearly 12 percent of GDP (Kirsten and Sindane 1994). In the rural areas of Lesotho, only 5 percent of the households have members in the formal employment sector while three out of every ten rural households rely on casual labour for income (Lesotho Vulnerability Assessment Committee 2002).

![Figure 2.2](image-url) (a) Average annual income per capita (in 2000 US dollars); (b) Percentage of the economically active population that is unemployed. The areas with the highest unemployment rate are the former black homelands, which are characterised by subsistence farming and little formal economic activity. Notes: Low population densities exert a strong influence on income figures in the west, but the low per capita incomes in the former homeland areas are distinctive. Areas with the lowest unemployment rates are those with intensive industrial activity, such as Gauteng in the northeast and areas with high mining activity in the western parts of the basin. Source: MDB 2002.
INEQUALITY

The Gini Index serves as an indicator of equality of income distribution. South Africa has inherited great disparity in income distribution from the past apartheid regime. More than 60 percent of the population receive less than 10 percent of the national income (Figures 2.3a and b). With the exception of Lesotho, the poorer regions of the Gariep basin also have the greatest disparity in distribution of wealth, with the largest shares of income landing in the fewest hands in the former homelands. These areas are characterized by subsistence farming, little economic activity, and high unemployment rates. The wealthier industrialised areas, such as Gauteng, have the most even distribution of income in the South African part of the Gariep basin.

Box 2.1 Wealth, Income, and Unemployment: Local-scale Perspectives

It is difficult to assess community well-being with the measures of income used at the basin scale. This is because local livelihoods are dynamic, people adopt a variety of strategies to make a living, and non-tangible values contribute significantly to local people’s definition of their well-being. “Not being vulnerable” was, for example, an important criterion of well-being stated by people in Sehlabathebe and the Great Fish River sites. “Self-determination” featured strongly as a well-being criterion in the Richtersveld. In the Kat River area, a tributary of the Great Fish, communities’ sense of belonging was more important than cash.

In the three community assessment localities, monthly cash income and mean household income varied considerably within and between study areas. The Richtersveld people, for example, had considerable assets because of their large herds of livestock. In the Great Fish River site, small numbers of affluent urbanites lived next to very poor households. At the Lesotho site, everybody was poor, earning less than R200 per month. Livestock ownership was a significant indicator of wealth in the three rural study sites (Table A). Although most households own livestock, individual herds are small.

Table A Livestock ownership at local sites in the Gariep basin.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Percentage livestock ownership</th>
<th>Sheep/goats</th>
<th>Cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sehlabathebe (Lesotho)</td>
<td>51%</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Great Fish River</td>
<td>68% goats; 30% cattle</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Richtersveld</td>
<td>> 50%</td>
<td>250</td>
<td>0</td>
</tr>
</tbody>
</table>

Unemployment is also an unreliable indicator of community well-being as most people have some form of cash income, either through selling local products (many of which are derived from ecosystems), or social grants. Table B indicates the diversity of income sources at Sehlabathebe. At Great Fish River, 48 percent of those of employable age were unemployed in 1994 and the figure is believed to have increased. At Richtersveld, most pastoralists work in the diamond mines for some months of the year.

Table B Sources of income at Sehlabathebe. Many households have multiple sources of income, resulting in a total percentage greater than 100.

<table>
<thead>
<tr>
<th>Sources of income</th>
<th>Number of households</th>
<th>Percent of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>None</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Piece Jobs</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Food Aid</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>Relatives</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Selling Animals</td>
<td>3</td>
<td>7.5</td>
</tr>
<tr>
<td>Donations</td>
<td>3</td>
<td>7.5</td>
</tr>
<tr>
<td>Selling Vegetables</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Selling Beer</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

The Gini Index serves as an indicator of equality of income distribution. South Africa has inherited great disparity in income distribution from the past apartheid regime. More than 60 percent of the population receive less than 10 percent of the national income (Figures 2.3a and b). With the exception of Lesotho, the poorer regions of the Gariep basin also have the greatest disparity in distribution of wealth, with the largest shares of income landing in the fewest hands in the former homelands. These areas are characterized by subsistence farming, little economic activity, and high unemployment rates. The wealthier industrialised areas, such as Gauteng, have the most even distribution of income in the South African part of the Gariep basin.
LITERACY

South Africa's literacy as reported in UNDP (2003) is 85.6 percent, though Figure 2.4a reveals a different picture for the Gariep basin (see also Box 2.2). Only in its industrialised regions, with higher incomes and accessibility to schools, is there a high functional literacy meaning that people aged fifteen and older are able to read, write, and do arithmetic well enough to meet basic job requirements. This effect of averaging over sub-national differences may in part be responsible for the high average literacy rate reported for Lesotho. Primary school enrolment is above 80 percent for most parts of the basin (Stats SA 2001), yet literacy remains extremely low in rural areas. The South African government has tried to make education accessible to the poor population by providing it free of charge, but the low density of, and travel distances to, rural schools challenge this strategy.

Figure 2.3 (a) The Gini index as indication of the equality of income distribution in the economically active populations (0: perfect equal distribution, 1: most disparate distribution of income). The greatest disparity in income distribution coincides with regions characterised by high unemployment rates and low average income per capita, with the exception of Lesotho, which has the most even distribution in income in the basin; (b) An example of the share of incomes for Lesotho, Johannesburg (industrialised, high income), and Sengonyana (formerly within the Bophuthatswana homeland). In the latter, the top 5 percent of income earners in the economically active population earn all the income. In Johannesburg, approximately 30 percent of the total income goes to the top 5 percent of income earners (calculated from data obtained from the MDB 2002).

Box 2.2 Literacy and Education in Sehlabathebe

Literacy at the community assessment site in Lesotho was low. Of 40 households interviewed, 35 percent stated that the highest education level attained within the household was eight years of schooling (Grade 8), with only 10 percent stating that they had members that had reached tertiary levels of education. Of the total population, eight percent had never attended school, 15 percent had education levels classified as unknown and six percent were not attending school yet. The remaining 26 percent had achieved between one year and 13 years of schooling.
LIFE EXPECTANCY

The South African province with the highest life expectancy is the Western Cape (lying mostly outside the Gariep basin) at 67.8 years, followed by Gauteng and the Northern Cape. Residents of the North West Province and Lesotho have the lowest life expectancies at birth (59.9 and 45 years respectively), as illustrated in Figure 2.4b. Life expectancy has decreased gradually but noticeably during the past decade due to increasing HIV/AIDS prevalence, as discussed below.

AGE DEPENDENCY

Age dependency is an indication of the degree of demographic transition that has taken place in society, where a high age dependency ratio would indicate a significantly younger than average population. In the Gariep basin, Gauteng has made the most progress of all regions in its demographic transition, having an age dependency that resembles that of an industrialised country (Figure 2.5). The former poor homelands have a very large age dependency ratio, showing early progress of demographic transition where the birth rate is still far above replacement level.

RECENT TRENDS IN HUMAN WELL-BEING

The poorer members of the Gariep population are caught in a time-lapse behind the demographic transition which has already occurred in the richer parts of the basin’s population. Continued high fertility rates in the poorer population segment means that the annual population growth in the region is outstripping the annual increase of the GDP. The GDP per capita has been decreasing steadily since 1980 (Erasmus and van Jaarsveld 2002). Although Lesotho has a relatively even distribution in wealth, the income per capita is about one-sixth of that of South Africa.

Lesotho experienced similar population demographic trends to those observed in the poor population of South Africa (UNDP 2001). The widening gap between the uneducated and rapidly increasing poor population in South Africa and Lesotho and the educated wealthy population has resulted in a steady decrease of the human development index for both countries to a level that is currently lower than that observed in the 1990s (UNDP 2001). Consequently, life expectancy decreased between 1991 and 1996 across the Gariep basin after an initial increase between 1980 and 1991, and is currently lower than in 1980 (Stats SA 2001).

The rate of unemployment in the Gariep basin has also increased during the past two decades, due to population growth (specifically of the potential economically active population) outpacing economic growth. This has caused the formal economic sector’s absorption capacity to decrease from levels of 73.6 percent in the 1960s to 12.5 percent in 1990, and has forced people to seek alternative options for
income in the informal sector (Beukes 1990, Kirsten and Sindane 1994). Between 1990 and 1991 alone, the number of workers in the informal economic sector increased by 40,000.

![Figure 2.5](image)

Figure 2.5 The number of dependants (persons younger than 19 or older than 65) per person of economically active age (between 20 and 65). Age dependency provides an indication of demographic transition within the Gariep basin. A very high age dependency ratio is indicative of a very young, rapidly growing population. Lower age dependency ratios (50 or less) are representative of stabilising populations in industrialised countries. In general, the poor regions are those with extremely high dependency ratios. The lowest dependency ratios are found in the most industrialised regions (calculated from data obtained from the MDB 2001).

In contrast to the above patterns, literacy in the Gariep steadily increased between 1980 and 1995 (Figure 2.4a). Literacy has recently improved further, especially in the provinces of Mpumalanga (from 61.35 to 79.42 percent) and KwaZulu-Natal (from 71.09 to 89.17 percent) (Stats SA 2001). Literacy estimates in Lesotho range from 72 (rural males) to 92 percent (urban females) (Lesotho Bureau of Statistics 2002b).

PROSPECTS FOR HUMAN WELL-BEING IN THE FUTURE

Slow economic growth relative to population growth in the Gariep basin indicates that the decreasing income per capita is likely to persist for some time. Disparities in income and employment opportunities between rural and urban communities are expected to lead to an increase in unplanned urbanisation. Depending on the abilities of planning authorities to provide services such as water, sanitation, and infrastructure, this may lead to an increase in literacy and accessibility to health services in the long term. Given the decrease in secondary enrolment in Lesotho (UNDP 2001), it is unlikely that Lesotho will follow the same trend, and a stabilisation of, or even a decrease in literacy can be expected in Lesotho.

There are concerns that the HIV/AIDS epidemic may further exacerbate the quality of life and increase social dependency. A shortage of labour could inhibit the labour-intensive economy (Rosen et al. 2000, Erasmus and van Jaarsveld 2002). These are all factors that affect human well-being. The incidence of HIV/AIDS in Lesotho and South Africa (Table 2.1) is reportedly extremely high, exceeding 30 percent of the economically active population in Lesotho and KwaZulu-Natal Province, largely due to the migration of labour in the mining and transport industries between the two countries and poor health education (Lurie 2000). Although these official figures have been the subject of some debate (see, for example, Malan 2003, Geffen 2004), the reality of HIV/AIDS impacts at a household economic level cannot be ignored. Given the current reported prevalence of HIV/AIDS, elevated mortality rates are expected to lead to an eventual shortage in unskilled labour (rural and urban), which in turn can be expected to negatively impact on economic growth (Erasmus and van Jaarsveld 2002). Strategies for the promotion of public awareness about HIV/AIDS as well as the provision of anti-retroviral treatment have been put in place by the South African government (Department of Education 2002). Should these be successful, the spread of HIV/AIDS could be contained within the next decade. If not, the impact of the disease on the population can be expected to cause further impoverishment of the region.

Despite these negative trends, there are positive prospects for human well-being. Unpredictable events such as a surge in tourism due to the successful implementation of the Richtersveld Ai-Ais Transfrontier
National Park, or the implementation of irrigation schemes that work in the Great Fish River area, for example, may create unexpected improvements in the well-being of certain communities.

Overall, these indicators suggest that human well-being is variable in the Gariep basin and that for many individuals, satisfactory well-being remains beyond their grasp. In itself, however, the HDI does not reveal how human well-being interacts with ecosystem services in positive and negative feedback loops. In the condition and trends assessment that follows, we attempt to identify how people’s access to and use of specific ecosystem services affect their well-being.

Table 2.1 Mean values and 95% confidence limits of HIV prevalence per province in antenatal clinic attendees in South Africa, 2000 - 2002. *Source: Department of Health 2003.*

<table>
<thead>
<tr>
<th>Province</th>
<th>Est. (HIV+) 95% CI 1998</th>
<th>Est. (HIV+) 95% CI 1999</th>
<th>Est. (HIV+) 95% CI 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>KwaZulu-Natal</td>
<td>36.2 (33.4 - 39.0)</td>
<td>33.5 (30.6 - 36.4)</td>
<td>36.5 (33.8 - 39.2)</td>
</tr>
<tr>
<td>Gauteng</td>
<td>29.4 (27.2 - 31.5)</td>
<td>29.8 (27.5 - 32.1)</td>
<td>31.6 (29.7 - 33.6)</td>
</tr>
<tr>
<td>Free State</td>
<td>27.9 (24.6 - 31.3)</td>
<td>30.1 (26.5 - 33.7)</td>
<td>28.8 (26.3 - 31.2)</td>
</tr>
<tr>
<td>Mpumalanga</td>
<td>29.7 (25.9 - 33.6)</td>
<td>29.2 (25.6 - 32.8)</td>
<td>28.6 (25.3 - 31.2)</td>
</tr>
<tr>
<td>North West</td>
<td>23.1 (20.1 - 25.7)</td>
<td>25.2 (21.9 - 28.6)</td>
<td>26.2 (23.1 - 29.4)</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>20.2 (17.2 - 23.1)</td>
<td>21.7 (19.0 - 24.4)</td>
<td>23.6 (21.1 - 26.1)</td>
</tr>
<tr>
<td>Limpopo</td>
<td>13.2 (11.7 - 14.8)</td>
<td>14.5 (12.2 - 16.9)</td>
<td>15.6 (13.2 - 17.9)</td>
</tr>
<tr>
<td>Northern Cape</td>
<td>11.2 (8.5 - 13.8)</td>
<td>15.9 (10.1 - 21.6)</td>
<td>15.1 (11.7 - 18.6)</td>
</tr>
<tr>
<td>Western Cape</td>
<td>8.7 (6.0 - 11.4)</td>
<td>8.6 (5.8 - 11.5)</td>
<td>12.4 (8.8 - 15.9)</td>
</tr>
<tr>
<td>National</td>
<td>24.5 (23.4 - 25.6)</td>
<td>24.8 (23.6 - 26.1)</td>
<td>26.5 (25.5 - 27.6)</td>
</tr>
</tbody>
</table>
2.3 Freshwater Services

Though the Gariep River is South Africa’s main hydrological artery, it transports only one-tenth of the volume of the Zambezi River and only one percent of the Congo (DWAF 2002a). Nonetheless, few opportunities have been wasted to tap the potential of the Gariep River, clear evidence of which is offered by the 31 dams that regulate its flow (Heyns 2004). Massive undertakings such as the Orange River Development Project (ORDP) and more recently the Lesotho Highlands Water Project (LHWP), the largest transfer scheme in African history, impound and divert water to serve the Gariep River’s competing uses: the irrigation of the agricultural heartland, the urban and industrial demands of Gauteng Province, and the daily requirements of the region’s people and environment.

Freshwater is unique in that it is a provisioning, regulating, supporting, and cultural ecosystem service. As is common nearly worldwide, the great efforts expended in the Gariep to harness the provisioning services of freshwater have typically come at a cost to other services, severely altering the system, compromising its water quality, ecosystem integrity, and underlying ability to continue providing water. As the Gariep flows west to the Atlantic Ocean, it bears the marks of the many human modifications made upstream: dams have converted seasonal flows to perennial ones, hydropower creates rapid pulses in flow, and flood events are rare or absent, confounding the natural fluctuations on which the river’s biota depends. Much concern abounds over the impacts of the flow regime on the Orange River Mouth Wetland, a Ramsar Site and Important Bird Area (see Chapter 2.9 Ecosystem Integrity).

These engineering feats to ensure the region’s water supply have also had significant social impacts. Despite their many benefits, access to water and sanitation services remains problematic for those who inhabit isolated rural areas and informal settlements that lack infrastructure. The South African water sector, however, is currently embarking on a major transformation as laid out by the National Water Act (DWAF 1998), which emphasises equity, sustainability, and efficiency (Box 2.5). The management of the Gariep basin extends beyond South Africa’s borders; the basin’s water is shared with Botswana, Lesotho, and Namibia, underscoring the importance of joint stewardship, a provision for which is made by several international agreements, including the SADC Protocol on Shared River Courses.

Supply

SURFACE WATER RESOURCES

The majority of South Africa’s utilisable water is in the form of surface water, which is unevenly distributed across the country; 60 percent of the flow is generated on only 20 percent of the land (Basson et al. 1997). The total virgin mean annual runoff of the Gariep basin is 15 408 million cubic metres, about one-third of the total runoff of South Africa, which includes 4800 million cubic metres that originates in Lesotho (DWAF 2002a) (Figure 2.6a). Average per capita water availability for the Gariep basin is 1096 cubic metres per year, nearly placing it in the category defined as “chronic scarcity” by Falkenmark and Widstrand (1992) (Figure 2.6b). A higher-resolution examination reveals that 28 percent of the basin is beyond the “water barrier,” and experiences continual wide-scale water supply problems, while 57 percent has an adequate supply.

The natural runoff in the Gariep basin is subject to high rates of evaporation and pronounced seasonal effects, which have been largely averaged out by the construction of dams. On average, less than three percent of total annual natural runoff occurs during the dry season (the four consecutive months of the year with the lowest cumulative runoff). About 80 percent of the Gariep basin receives less than one percent of its total runoff during the dry months, while less than five percent receives more than five percent in this season. Because of the pronounced low flows during the dry season, the mean annual runoff as an indicator of surface water availability is actually misleading (Mackay 2003). While the median reflects the situation more accurately, hydrological sampling schemes have traditionally reported the mean.
GROUNDWATER

Groundwater supplies many rural areas and has played an important role in the region historically; Pretoria, Potchefstroom, and Mafekeng were all settled near streams fed by springs from aquifers. Today, more than two-thirds of South Africa’s population depends on groundwater for its domestic needs. Groundwater has several advantages over freshwater resources: it occurs widely in the region, including the driest two-thirds of South Africa where surface water is limited or non-existent, and it can meet domestic needs in a cost-effective manner (DWAF 2000b). However, utilisation is limited by the geology of the region as no major aquifers exist that lend themselves to large-scale development (Basson et al. 1997). Where they do, quality may be the limiting factor, both naturally and due to pollution. In about one-fifth of the South Africa, particularly in its extremely arid zones, poor quality makes groundwater unfit for domestic use (Haupt 2001). In the Upper Vaal catchment where surface water resources are fully developed, only 5 to 20 percent of groundwater supplies have been exploited, but because of pollution by mining, further development of these resources would require substantial investments in treatment.

The potential exploitable groundwater resources of the Gariep constitute approximately 3868 million cubic metres per year, 341 million of which are located in Lesotho (Lesotho Meteorological Services 2000). Use totals about 366 million cubic metres per year. Figures 2.7a and 2.7b depict the distribution and use of groundwater in the basin. The breakdown of use by sector is given in Table 2.2.

A number of difficulties exist in assessing the quantity of groundwater. There is little information available on abstractions of groundwater by the mining and industrial sectors, although the mining industry reportedly constitutes five percent of total groundwater usage (Godfrey et al. 2002). The accuracy of borehole data varies considerably, and in some areas, very few data points exist. It is likely that borehole yield, and hence exploitable groundwater potential, may be underestimated in many instances (Haupt 2001). Assessing quality issues also presents a challenge, as discussed later in this chapter.
The groundwater balance reflects the availability of groundwater relative to utilisation, defined as the extent of the development of resources (Figure 2.8a). In areas of high abstraction, groundwater may be exploited at a rate faster than it is recharged, leading to the unsustainable use of the resource. Throughout most of the basin, groundwater is an underutilised resource, although there may be no viable options to develop it. In addition, the relationship between groundwater and surface water may present a barrier, as groundwater abstractions can reduce the amount of surface water available. The extent of this interaction can be estimated by calculating baseflow, the portion of groundwater that contributes to the low flow of streams, or in other words, the portion of the total water resource that can be abstracted either as groundwater or as surface water (Haupt 2001). The proportion of water can be abstracted as both determine the amount of expected impact of groundwater abstraction on surface water availability (Figure 2.8b). The impact is most significant in the higher rainfall areas of the region.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Groundwater use, 2000 (millions of cubic metres)</th>
<th>Percent of total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigated agriculture</td>
<td>313.0</td>
<td>94</td>
</tr>
<tr>
<td>Municipal</td>
<td>7.5</td>
<td>2</td>
</tr>
<tr>
<td>Rural</td>
<td>6.2</td>
<td>2</td>
</tr>
<tr>
<td>Livestock</td>
<td>5.7</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>332.4</td>
<td>100</td>
</tr>
</tbody>
</table>
RETURN FLOWS

A substantial volume of water is recyclable, in the form of return flows from agriculture, urban areas, and mining developments. Return flows may come from both surface and groundwater resources. Depending on the source, water may be discharged directly to a stream or returned as treated effluent.

The amount of water that contributes to return flows in the Gariep basin is indicated in Table 2.3. Total return flows from the irrigation, urban, and mining sectors equal 869 million cubic metres per year, equivalent to about 21 percent of the combined water requirements of these sectors. Because of consumption levels and sewage infrastructure, urban return flows are high in Gauteng Province and the Bloemfontein area. Effluent returns from mining and decanting (groundwater discharge by mines) are substantial in the Mooi catchment and in the East Rand area of Gauteng. Despite their contribution to total water resources, return flows do not always return to the same catchment or river from which they originate, nor do they return at the same level of quality. Return flows from irrigation along the Gariep River are often highly saline, while those from mine pumpage in the Vaal catchment may be both saline and polluted (Basson et al. 1997). While treatment of concentrated water-borne sewage is increasing, vast amounts of diffuse untreated effluent are still released locally. An estimated 16 percent of total urban water supply is diffused annually, often untreated, leading to pollution of both groundwater and surface water resources (DWAF 2002b).

Figure 2.8 The Gariep basin's (a) groundwater balance and (b) effect of groundwater abstraction on surface water. Source: Haupt (2001). Notes: (a) Groundwater balance is calculated by comparing exploitation potential and harvest potential with total groundwater use. Over-utilisation occur where total use exceeds the harvest potential, or the maximum volume of ground water that may be abstracted in an area without depleting its aquifers. Heavy utilisation results where total use exceeds exploitation potential but not harvest potential. A moderately utilised catchment's total use exceeds 66 percent of exploitation potential, and an underutilised catchment uses less than 66 percent. (b) The contribution of groundwater to baseflow is determined by the impact of abstraction on surface water. Baseflow is defined here as the annual equivalent of the average low flow that is equalled or exceeded 75 percent of the time during the 4 driest months of the year (Haupt 2001). A baseflow factor is calculated by dividing baseflow by harvest potential. A baseflow factor of 0 implies a negligible impact, a factor of ≤ 0.3 a low impact, a factor of 0.3 – 0.8 a moderate impact, and a factor of > 0.8 a high impact.

Demand

Water requirements fall into one of seven major sectors: irrigation, urban, rural, power generation, mining and other bulk industrial, afforestation, and transfers between basins or water management areas (DWAF 2002a). Additional consumption by alien vegetation and dryland crop production reduce streamflow. A national reserve mandated by the Water Act allocates water firstly to fulfil basic human requirements (25 litres per capita per day within 200 m of the home), secondly to meet ecological requirements (which vary from catchment to catchment), thirdly to honour legally binding international commitments, and fourthly to satisfy strategic requirements such as power generation. Under the new law, users may withdraw water only after reserve requirements are met.
Table 2.3 Contribution of return flows to the Gariep basin from irrigation, urban developments, and mining. *Source:* WSAM. *Notes:* Return flows from mining exceed 100 percent of the sector’s requirements due to the large discharges of groundwater.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Return flows (millions of cubic metres)</th>
<th>Percent of sectoral requirements (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigated agriculture</td>
<td>306</td>
<td>9.8</td>
</tr>
<tr>
<td>Urban</td>
<td>416</td>
<td>45</td>
</tr>
<tr>
<td>Mining</td>
<td>147</td>
<td>124</td>
</tr>
<tr>
<td>Total</td>
<td>869</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Figure 2.9 Proportion of sectoral water requirements in South Africa and the Gariep basin, 1980 - 2000. *Sources:* SA data from Department of Water Affairs 1986, DWAF 2002a; Gariep basin data from the WSAM. *Notes:* Total requirements are less than 100 percent in some years because demand from other sectors was not reported. These totals exclude the human and ecological reserve requirements, which had not yet been established in the earlier years.

Sectoral water demand in South Africa in 1980, 1990, and 2000 and in the Gariep basin in 1995 is shown in Figure 2.9. Historically, irrigation has used the largest proportion of water, though the agricultural sector contributes less than 5 percent to the South African GDP (of which irrigated agriculture contributes 25 to 30 percent) (DWAF 2002a), and its output per unit of water consumed is only one-fiftieth of that produced by industry (Eberhardt and Pegram 2000). Until recently, records of sectoral water requirements were available only at the national scale or per water management area, posing a challenge to a fine-scale analysis of temporal use in the Gariep basin. Definitions of water use sectors have also varied. Table 2.4 shows the total breakdown of sectoral requirements in the Gariep basin in 1995. The spatial distribution of water requirements drives much of the region’s water resource management. As Figure 2.10a illustrates, the bulk of irrigation occurs along the Gariep, Fish, and Sundays Rivers. This contrasts with the distribution of the second largest consumer, the urban sector, with demand reflecting the location of urban areas (Figure 2.10b).
Table 2.4 Water requirements in the Gariep basin. *Source:* WSAM. *Notes:* Requirements are at a standard (98%) level of assurance (i.e. requirements will fail to be met once in 50 years). Alien vegetation and commercial forestry requirements are determined in WSAM in terms of the impact of the land use on catchment yield or runoff. While the model also calculates the impact of dryland crops (i.e. sugar cane) on the available yield, this is an insignificant amount of water in the Gariep basin.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Water Requirement - 1995 (millions of cubic metres)</th>
<th>Percent of Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigated agriculture</td>
<td>3122</td>
<td>63.9</td>
</tr>
<tr>
<td>Urban</td>
<td>916</td>
<td>18.8</td>
</tr>
<tr>
<td>Rural</td>
<td>297</td>
<td>6.1</td>
</tr>
<tr>
<td>Other industrial</td>
<td>209</td>
<td>4.3</td>
</tr>
<tr>
<td>Mining</td>
<td>119</td>
<td>2.4</td>
</tr>
<tr>
<td>Power generation</td>
<td>85</td>
<td>1.7</td>
</tr>
<tr>
<td>Alien vegetation</td>
<td>115</td>
<td>2.4</td>
</tr>
<tr>
<td>Commercial forestry</td>
<td>19</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>4882</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Figure 2.10 Distribution of water requirements in the Gariep basin by (a) irrigated agriculture and (b) the urban sector. *Source:* WSAM.

ECOLOGICAL RESERVE

By law, ecological reserve requirements must be satisfied before water can be allocated to other water use sectors. The *ecological reserve* refers to the quantity, pattern, timing, water level, and assurance of water required to remain in a natural body of water in order to ensure its ecological functioning (DWAF 2002a). The ecological reserve is a relatively new and evolving concept in southern Africa (King and Louw 1998, Hughes 2001, Hughes and Hannart 2003) that has emerged in response to the need to deal with increasing human impacts on aquatic ecosystems. It entails a particularly challenging task in a region in which many people are without access to basic water needs. Furthermore, the understanding of relationships between hydrology and ecological functioning, and the data needed to assess them, are both limited at present (Hughes and Hannart 2003). Typically, for a given river, wetland, estuary or aquifer, the process involves the identification of a maintainable pre-defined, desired state and the recommendation of a flow regime needed to sustain it. This has been done using specialist input, hydrological models, and building consensus among stakeholder groups. For the Gariep basin,
provisional estimates calculated by the WSAM indicate that approximately 16 percent of the basin’s annual runoff is required for the ecological reserve (Figure 2.11a), but for some catchments the reserve requirements are as high as 50 percent depending on hydrological and ecological characteristics. Because natural flow regimes vary throughout the year, stakeholders will usually opt to define requirements on a monthly or seasonal basis. As allocated at present, the Gariep’s total yield would be unable to satisfy the provisional estimates of about 43 percent of the basin’s quaternary catchments (Figure 2.11b).

Figure 2.11 (a) Spatial distribution of ecological reserve requirements in the Gariep basin; (b) Quaternary catchments in which the provisional ecological reserve estimates are able or unable to be met with current yield. Source: WSAM. Note: Runoff refers to the cumulative natural runoff at the catchment outlet. The drier western half of the basin contains many endoreic areas, which are flat and often have pans that do not spill water. The pans usually have clay type surfaces that do not allow infiltration of water; thus, water evaporates and is lost to the river system. These endoreic areas do not normally contribute to catchment streamflow. In these cases, ecological reserve requirements may not be met within those particular catchments.

INTERNATIONAL COMMITMENTS

As stipulated in the South African Water Act, international commitments to nations sharing its water resources must be honoured before water may be licensed to South African users other than the human and ecological reserves. The Gariep River forms the border between South Africa and Namibia for 1000 kilometres before it reaches the Atlantic Ocean. Under a bilateral accord, Namibia currently abstracts an estimated 54 million cubic metres of water annually from the ORDP and is entitled to 60 million more (DWAF 2002a). Water from the Gariep River is estimated to be adequate for both countries until 2007, at which time additional water will be required by improved management measures or a new dam, options which are both under consideration at present (Heyns 2004). Under the Water Act, international obligations also extend to protection of the quality of water released downstream.
Relative Distribution of Demand and Supply

The spatial mismatch between demand and supply in the Gariep has its roots in historical patterns of settlement in the region, which followed mineral rather than water resources. An elaborate network of dams compensates the difference between annual surface water availability and total demand (Figure 2.12a) and inter-basin transfers that move water to areas of highest need (Figure 2.12b). Of these, the LHWP stands out among them as the region’s most ambitious scheme to date (see Box 2.3).

Currently there are sufficient resources to meet all needs, but if current trends continue, an expected shortfall will occur due to increasing population growth and urbanisation, as well as the still unmet need to supply the millions of individuals who are without services. Some debate surrounds the prediction that South Africa will reach full utilisation of its current water resources (as well as Lesotho’s) within the next 30 years (Basson et al. 1997), for reasons related to the effects of HIV/AIDS on water demand and economic productivity (Eberhardt and Pegram 2000), and the uncertainty associated with climate change. Unrealised potential exists mainly in the well-watered south-eastern part of the country; elsewhere, surface and groundwater resources are nearly fully utilised. The adoption of demand and resource management strategies would minimize current losses and reap further gains from improved return flows, as discussed later in this chapter.

![Figure 2.12](image_url) Relative distribution of demand and supply of surface water resources in the Gariep basin. (a) Water requirements as a percentage of mean annual runoff. Where requirements exceed 60 percent of availability, a situation of physical water scarcity is said to occur, or alternatively, 80 percent after accounting for the ecological reserve (Kamara and Sally 2002); (b) Major interbasin transfers and dams. Source: WSAM.

Access

Past allocation of water was economically inefficient and inequitably shared. A system of riparian rights governed much of the resource and favoured property owners with water on their land (Thompson et al. 2001). The present strategy in South Africa aims to achieve a more sustainable distribution of water, yet a lack of or poor maintenance of infrastructure and management and funding problems present barriers to its successful nationwide implementation. At present, there are some 5 million people obtaining water from rivers and springs and some 16 million people without adequate sanitation facilities (DWAF 2004), but this is an improvement since 1998, when the numbers were 12 million and 21 million, respectively (King and Louw 1998). Figure 2.13 depicts the percentage of the urban population without access to water services. Access to water services and sanitation in rural populations is more difficult to define, due to the reliance on groundwater supplies in rural areas that may not be routinely monitored.
Impact assessment have developed since the inception and design of the project in the 1970s and 1980s, the fields of environmental and social issues that prevailed during those decades. Hence, many of the potential downstream impacts of the LHWP were not thoroughly considered, in-stream flow requirements (IFR) were not calculated, and an environmental impact assessment began only after the first dam, Katse, was already underway. During 2000 to 2002, Metsi Consultants completed studies to compare the economic, environmental, and social costs and benefits of four scenarios for reducing the amount of water released: one as specified by the treaty, and three that pose varying reductions in the releases, with corresponding reductions in the impacts on downstream ecosystems. These studies suggest an estimated 3.1 to 8 million Maloti (0.45 to 1.26 million 2004 US dollars) of resource losses (fish, forage, medicinal plants, wild vegetables, and trees and shrubs) and mitigation costs (public and animal health), depending on the scenario. Others counter that the royalty and hydropower revenues to be foregone by increasing the downstream IFR releases would far outweigh downstream losses.

It is difficult to assign an economic value to many of the costs. The project affects an estimated 8250 households along 5 kilometres of river, having required the relocation of 24 000 people under Phase 1A, flooded large amounts of cropland and grazing land, and caused soil erosion. It has substantial implications for health and biodiversity: slower flows and higher nutrient and algal levels will change aquatic invertebrate composition and may pose health risks, diversion of water will affect quality downstream, while fish populations, particularly the threatened endemic Maloti minnow, are predicted to plummet drastically and possibly disappear from some reaches. The potential political costs of the project are also high: South Africa has been the principal architect of the endeavour, but Lesotho has the water, and the continued success of the arrangement depends on maintained good relations between the two nations and public support on both sides of the border. A large deal of controversy has attended the project since its inception, with some levelling the charge that the project is unneeded and that Gauteng’s requirements could be better met by repairing infrastructure and managing demand. Other critics relate to the “heavy-handedness” of the project implementation which was felt to exclude stakeholders, the web of corruption that has subsumed project officials and international construction firms, and the hike in water tariffs because of the project, which many of Gauteng’s poor cannot afford.

Meanwhile, in Lesotho, the LHWP has not ameliorated the inadequate delivery of water to rural areas. Although a safe water supply reaches 83 percent of its urban population, only 54 percent of its substantially larger rural population shares this benefit. Furthermore, in 2002, only 3 percent of Lesotho’s population had access to electricity.

Hirschowitz et al. (2001) report that between 1995 and 1999, the proportion of South African households with access to clean water from pipes in the dwelling or on site, communal taps, or public tankers increased from 78.5 to 83.4 percent. Over the same period, the proportion obtaining water from boreholes and rainwater tanks declined from 10 to 4.7 percent, while direct abstraction from rivers, streams, and dams remained constant at about 11.5 percent. A United Nations Population Foundation (UNPFA) survey of Lesotho households revealed that approximately 72 percent of the population has access to safe water, defined as one of the following: piped water from either a private or public yard, boreholes, or covered springs (UNPFA 2001). Among the urban population, 83.4 percent has access to private or public piped water, while only 54.2 percent of the rural population does. More than half of Lesotho’s population is without access to facilities to dispose of human waste.

In 2001, the South African government initiated a policy of “free basic water” under which municipalities are to provide the poorest households with 6 kilolitres of free water per month. This policy is currently serving about 57 percent of the South African population, but only 29 percent of the very poorest population, largely because no mechanism exists in these communities to deliver the water at present (Mackay 2003). It is at the discretion of the municipalities to decide how to implement the policy as quickly as possible while maintaining its financial viability.

Groundwater, though a largely neglected resource in the past, is likely to fill the gap in many areas. The 1998 Water Act changed the legal status of groundwater from that granted to “private water” to that of a “significant resource” which must be treated as a common resource for all (Braune, pers. comm.).

Water Quality

Water quality is in many instances coupled to water quantity, but is a specific concern due to the direct effects of many human activities that alter its physical and chemical properties, including those associated with other ecosystem services, notably agriculture and mining in the Gariep basin. Because ecosystems and human and livestock health are influenced by changes in water quality, guidelines have been established with recommended target levels for each (DWAF 1996a, 1996b). As water quality declines, consumers may be forced to lower their standards of acceptability or, if they are able, to seek out alternative sources. Domestic use and irrigation generally require water of higher quality than mining and industry.
The issue of quality concerns water abstracted from rivers and streams, as well as return flows. Among the most common problems in the region are salinity, eutrophication of dams, acidification by mines and atmospheric deposition, potential toxicity, particularly downstream of mining and industrial areas, and excess deposition of nutrients from fertilizer and sewage treatment. Rural land use can have tremendous impacts on quality as well as quantity of runoff. The highly altered state of the Upper Tugela catchment, for example, has led to major sedimentation problems for the Tugela-Vaal transfer scheme, with significant economic impacts on rivers downstream. This has been exacerbated by the uncontrolled destruction of hundreds of small wetlands that intercept sediment (Braune, pers. comm.).

Salinity is the costliest of the water quality problems to manage (Herold and Rademeyer 2000). It is measured by total dissolved solids (TDS), an indicator of various inorganic salts dissolved in water (Figure 2.14). As water moves downstream and is increasingly affected by natural erosion and land use occurring upstream, salts tend to accumulate. Salinity levels exceeding 450 mg/l are above the recommended guidelines for target water quality (DWAF 1996a), although noticeable health effects are unlikely until levels reach about 2000 to 3000 mg/l. Changes in salinity affect aquatic ecosystems by altering water chemistry, which in turn can affect individual organisms, community structure, and microbial and ecological processes such as metabolic rates and nutrient cycling (DWAF 1996b). The nature and degree of the effect will depend on how much these changes deviate from the natural TDS concentration of a given site. Thus, absolute changes in TDS at a site are less indicative than the rate and duration of change in TDS.

Eutrophication (nutrient enrichment) of dams, caused by the accumulation of organic matter from industrial plants or residential areas, is a significant concern, with both biodiversity and economic implications. Eutrophication can lead to toxic algal blooms that may be lethal to fish and livestock and cause gastro-intestinal infection in humans (Holhs et al. 2002). Figure 2.15 illustrates the most problematic dams in the Gariep basin in terms of current trophic status or potential for related water quality problems. The majority of the dams experiencing serious eutrophication are located in the Crocodile West and Marico WMA that drains the northern half of Gauteng Province, just outside the Gariep basin.
Quality is a major barrier to the further development of groundwater resources. Because quality is determined in part by the lithology and in part by land use, it may be difficult to distinguish between causes of poor quality. Changes in groundwater quality may take a long time to detect, and options to improve quality are limited, as treatment of groundwater tends to be both difficult and expensive (DWAF 2000a). The principal activities that compromise groundwater quality are mining and industrial activities, fertilizer application, wastewater discharge and sewage, and waste disposal. Salinity, fluoride, and nitrate are among the constituents of groundwater quality that most often exceed recommended guidelines for drinking water quality in South Africa (Hohls et al. 2002). All are at their highest concentrations in the arid western regions of the Gariep basin (Figure 2.16). The target water quality level for fluoride is 1 mg/l. Above 1.5 mg/l, tooth damage may occur and above 3 mg/l, skeletal fluorosis is possible; both are conditions that affect aquatic organisms as well as humans. Fluoride levels may be naturally high in hot, arid areas. Nitrate plus nitrite (NOx) is an indicator of nutrient levels, typically high in areas of intensive agricultural activity or where pit latrines are common (Hohls et al. 2002). The target drinking water quality range for nitrate plus nitrite is 6 mg/l. Above 10 mg/l, hypertrophic conditions (excessive eutrophication) may occur, though the effects tend to be system-specific (DWAF 1996b).
In summary, salinity in both surface and groundwater and fluoride and NOx in groundwater is at its highest concentrations in the arid western downstream catchments, where resources are most limited. Lesotho’s water is naturally very low in salinity. The Fish River catchment in the south-eastern part of the basin has high TDS concentrations due to its natural characteristics, but the inflow of water it receives from the Gariep River via the Orange-Fish transfer scheme has reduced salinity to lower levels (Braune, *pers. comm.*). However, the Vaal River’s TDS levels are occasionally high from mine pumpage, as are the irrigation return flows to the Gariep River further downstream. This emphasizes the importance of assessing quality within the context of the entire system, including return flows and transfer schemes. Quality parameters must also be assessed over long enough time intervals to be able to detect significant changes that have implications for human health and ecosystems.

Capacity of Ecosystems to Continue Providing Water Services

The capacity of ecosystems to produce water relates to variables such as climate, topography, and geology, which are generally beyond human control, although in the Gariep much has been done to overcome their limitations. Changes brought about by human activities can drastically transform the ecosystems that underpin the continued provision of an adequate and safe freshwater supply. Land use and impoundments alter flow and riparian habitat, causing biodiversity loss and water quality declines, and impairing the ability of ecosystems to function. Wetlands, critical components of the freshwater system that naturally filter water and improve quality, are especially sensitive to the effects of dams and over-abstraction of groundwater.

Figure 2.16 Groundwater quality in the Gariep basin, as indicated by (a) salinity (TDS); (b) fluoride; and (c) nitrate. Source: Resource Quality Services, DWAF.
Chutter et al. (1996) discuss the impacts of the Gariep and Vanderkloof dams on the ecological condition of the Gariep River at length. The flow of the river is far from natural, with peak seasonal flows occurring much later in the summer than they did prior to impoundment, and winter flows increasing at the expense of summer flows. This has had a series of unintended effects, one being that the more stable flow has allowed certain species to proliferate along the Gariep River’s banks such as the blood-sucking blackfly (*Simulium chutteri*), outbreaks of which have devastated the agriculture sector. These conditions have also allowed alien invaders and *Phragmites* spp. reeds to replace large riparian trees. These prolific reeds lead to increased risk of flooding, compete with agricultural crops, are a fire hazard, and change riparian characteristics. While the reeds help to conserve soil and protect rivers banks when a flood occurs, and provide habitat to a number of organisms, they are thought to also aid the spread of blackfly due to the increased surface area they offer for larval attachment, and may also increase fine organic material on which the blackfly larvae feeds. A control program treats the blackfly breeding sites with larvicide, although flow manipulation has also been recommended.

The middle and lower reaches of the Gariep River are biogeographically isolated; thus, recolonisation possibilities are limited, making these reaches vulnerable to permanent loss of their biota. The two major dams on the Gariep produce hydropower, and release pulses of power generation twice a day, the effects of which can be observed 200 kilometres downstream of the Vanderkloof Dam. This section of the river, together with the area between the two dams, is referred to as an ‘ecological desert,’ indicative of the flow pattern that is prohibitive to the establishment of nearly all forms of aquatic life.

In some cases, species, communities, and whole ecosystems have been able to adapt to anthropogenic change without losing their internal structure and function. Elsewhere, a small change can trigger a system-wide collapse. There is yet only a limited understanding of the resilience of freshwater systems to change (see Box 2.4). The immediate – and monumental – task at hand for management of the Gariep’s water resources is to achieve a sufficient understanding to be able to effectively implement the ecological reserve as required by the Water Act. Because of differences in the eco-hydrological characteristics of rivers, different management objectives and variance in allowed deviations from natural conditions, reserve requirements must be determined on a case-by-case basis (Hughes and Hannart 2003). In general, the most important factors in determining IFRs include site-specific ecological functioning, the hydraulic characteristics of the channel that govern the relationship between flow and habitat, and the hydrological regime characteristics. Ecological functioning is based on the natural biota of the river and its habitat requirements such as depth and flow velocity during different life stages (Hughes and Hannart 2003). To do this for a single site, let alone for a large river basin, will require substantial investments of time and resources to gather and collate data and to ensure stakeholder participation. Consequently, several efforts have focused on rapid assessment methods and desktop models to expedite establishment of reserve requirements while studies that are more detailed are undertaken (Dickens and Graham 2002, Hughes and Hannart 2003).
Several types of indicators have been developed to evaluate conditions of aquatic habitat integrity. The River Health Programme (RHP) employs the South African Scoring System (SASS) to gauge the robustness and resilience of aquatic systems by measuring the presence of selected aquatic taxa with known levels of sensitivity to physical and chemical pollutants (Chutter 1998, Dickens and Graham 2002). The method is yet to be applied at the national level, and intensive studies have been completed for several catchments, mainly areas that lie outside of the Gariep basin. SASS scores have been calculated for Lesotho and continue to be recorded to determine impacts of the LHWP on water quality (Chutter 1998).

In general, there is a paucity of quantitative information about the impacts of anthropogenic change on Gariep basin ecosystems. A survey of available literature on Gariep River biota revealed that 36 percent...
of the studies conducted were on fishes and 16 percent on birds while only two studies were on sediments, and one each was on water temperature, invertebrates, and bacteria (Chutter et al. 1996). This illustrates not only the bias towards certain taxa, but the segregated nature of the ecological research done on this system. Accompanying this shortcoming are the general decline and variable accuracy of hydrological data for this region over the years, a trend that is nearly worldwide in its proportions (Brown 2002), and the expense of establishing monitoring programmes.

Response Options for Managing Water Services

MANAGING ECOSYSTEMS TO ENSURE WATER DELIVERY

Among the key strategies to ensure the continued provision of water is the establishment of ecological reserve requirements for all catchments in the basin. Failing this, water services cannot be managed sustainably. The Department of Water Affairs and Forestry (DWAF) is drawing up complementary sets of Resource-Directed Measures, of which the Reserve requirements are part, and Source-Directed Controls, aimed at managing impacts, to achieve this objective (DWAF 2002a). In addition, improved management of groundwater resources, as well as of the conjunctive use of surface and groundwater, could improve supplies and minimise conflict between the two resources. Improving water quality, control of alien vegetation, and preservation of in-stream habitat (rocks and gravel beds) would also serve to boost the capacity of ecosystems not only to deliver clean water but also to sustain ecological functions and aquatic biodiversity.

Significant efforts to launch monitoring programmes as well as to compile and synthesise existing data will be required to develop an understanding of and capacity to manage ecosystems that provide water services. Programmes to monitor specific problems such as eutrophication are now being established. The State of Rivers Reporting initiative of the Rivers Health Programme will evaluate and report on the current condition of and apparent trends in South Africa's rivers, drivers of change, and recommended interventions. It has already been initiated for several catchments and will be produced for all of the country's major river systems by 2008.

"Working for Water" is a programme involving several government departments and supported by both public and private funds with the objectives of water services management, land restoration, and poverty reduction through the employment of South Africans in alien vegetation clearing operations. In 2000/2001, the 23,998 people employed at the programme’s 313 project sites across all nine provinces cleared 70,660 hectares, undertook follow-up clearing of an additional 180,736 hectares, and began rehabilitation of 20 wetlands (DWAF 2003b). It is also encouraging the development of secondary industries to generate additional income and employment through the creation and marketing of products made from the cleared alien species.

Integrated Catchment Management (ICM), the coordinated management of agricultural, forestry, and water resources, has become an increasingly important strategy. While the Mountain Catchment Areas Act was introduced in South Africa in the 1970s to manage the high mountain areas which produce over 60 percent of the country's runoff, its effectiveness was reduced when the authority for these areas was devolved in the late 1980s from national to provincial level, where resources were lacking (WRI 2000).

TECHNOLOGICAL INTERVENTIONS

During much of the 19th century, technological, supply-side responses characterised water management in southern Africa, as elsewhere. This is beginning to change with recent and major shifts in the water policy arena, as discussed below. However, technology continues to play a key role in developing water resources. Additional phases of the LHWP are presently on hold, but a shortlist has been drafted of possible large-scale water resource developments to either serve irrigation purposes or meet domestic, urban, industrial, and mining needs (DWAF 2002a). A variety of alternative technological or development approaches have been highlighted. These include improvements in existing infrastructure, additional inter-basin transfers, improved release management, intensified re-use of water and return flows, reduction of evaporation and distribution losses, and desalination, though the latter would be applicable mainly to coastal urban areas. While unlikely to occur in the near future, cloud seeding and iceberg importation have been offered as potential technologies to augment water supplies. An alternative option,
and potentially economically competitive with desalinisation, is to import water to the Gariep from the water-rich Zambezi or Congo (Basson et al. 1997), though this is not yet being seriously considered.

Improvements in information technology and particularly hydrological and ecological information systems collectively form a major area of response options for water management. Two examples expected to go online in 2004 are the National Groundwater Archive and the Water Use Registration and Authorisation System (DWAF 2002a). The National Groundwater Archive is a web-based database to catalogue, store and retrieve data on modelled groundwater recharge, impacts of abstraction, and impacts of aquifer contamination. The Water Use Registration and Authorisation System is designed to register water use and licensing as well as track water charges.

LEGAL, INSTITUTIONAL, AND ECONOMIC POLICIES

South Africa is credited with developing one of the world’s most forward-thinking water management strategies, embodied in the White Paper on Water Supply and Sanitation of 1994, the Water Services Act of 1997, and the National Water Act of 1998 (see Box 2.5). This ensures that 25 litres of water per day are provided to all individuals free of charge, introduces compulsory licensing for other uses, which should effect a more efficient reallocation of water, and grants the right of water for the environment. Demand-side management, which focuses on controlling demand for existing resources, is a key part of the new water strategy. Changes in demand for water by different sectors are expected to ensue from a water pricing structure, in which the value of water for different uses will be more accurately reflected as scarcity increases. As of 1999, Water Resources Management Charges must be paid for all abstractions of raw water for irrigation, mining, industry, and municipal purposes, as well as commercial aforestation (DWAF 1999) (see Box 2.6).

Water availability is highly vulnerable to climate change, and thus responses must take this threat into account, especially in the more arid regions of the country, nearly all of which fall within the boundaries of the Gariep basin. The Third Assessment Report of the IPCC (2001) notes that the strain imposed by climate change will be greatest in developing countries with a limited capacity to respond, not only to climate change but also to population growth and increasing competition for resources, as well as to changes in demands, technology, and economic, social, and legislative conditions.

While climate change is a concern, water scarcity is primarily a governance problem (Pahl-Wostl et al. 2002). Stable, effective governance structures are requisite for water management both within the basin as well as across shared catchments. International co-management organisations, such as the Orange-Senqu River Commission (ORASECOM) recently established by South Africa, Lesotho, Botswana, and Namibia, are designed to share the management of riparian resources and ensure water security for all members, on the premise that political instability in one state negatively affects others (Turton 2003). Currently, about five international water-sharing agreements and studies, in various stages of implementation, concern the Gariep (DWAF 2002a). Cooperation in terms of water sharing is the jurisdiction of the SADC Protocol on Shared Water Courses, coordinated by the SADC Water Sector based in Lesotho.
The concept of virtual, or embedded, water presents one potential policy response that would require regional participation, whereby surplus grain is produced by countries without water stress, such as Zambia or Angola, and exported to countries such as South Africa to allow them to conserve their more meagre water resources (Eberhardt and Pegram 2000). Because the Water Act’s economic principle is designed to favour higher-efficiency uses of water, it may ultimately be cheaper to import food and use the water savings for more economically valuable applications.

SOCIAL, BEHAVIOURAL, AND COGNITIVE RESPONSES

Few people in South Africa, and presumably many city-dwellers, are aware of the great distances their water travels to reach them (Snaddon et al. 1998). The fact that the majority of the Gariep basin relies on inter-basin transfers masks the true extent of its existing water scarcity. Even in rural Lesotho, water is considered a free gift from God, sometimes called “white gold” (Lebesa 2003).
Increasing awareness regarding water conservation is being achieved in South Africa in part through the National Education Programme, the largest environmental education effort seen in the country to date. The National Water Resources Strategy makes a provision for communicating issues of water conservation and demand-side management to the general public and in schools, as well as marketing these concepts to water management and water services institutions (DWAF 2002a).

Box 2.6 Water Pricing

In the past, water infrastructure carried costs, but charges were not levied for water itself. Water pricing is an important implement for demand-side, as opposed to supply-side management, intended to reflect the true scarcity and value of water. The water pricing policy of 1997 and water pricing strategy of 1999 charted a course to ensure at least partial recovery of the costs incurred by water resource management and infrastructure development. It also encourages water conservation, by charging for eleven categories of water use, including the abstraction and storage of water, streamflow reduction activities, waste discharge, impeding and diverting flow, altering physical characteristics, and using water for recreational purposes. It thus provides a mechanism to internalise the major negative externalities of supplying and consuming water.

The pricing policy has three tiers, each to govern different types of charges. The first is a water resources management charge for raw, untreated water. A second is for the development and use of government waterworks. The third tier aims to achieve the equitable allocation of water, by such means as auctions or trading. Charges do not apply to water use by the reserve, international obligations, and inter-basin transfers. In addition, no charges are to be imposed on free basic water or on ex-homeland irrigation schemes or emerging farmers, for whom water is to be decreasingly subsidised for five years, after which the full charges take effect.

Water resource charges are established per water management area (WMA), and differ between area and between sectoral unit cost (see below). The Catchment Management Agency (CMA) for the WMA determines the rate, based on the costs of managing the water and the modelled water availability, less legally binding allocations. Water resource management charges were to be phased in from 2001, with revenues from these charges to be collected by the CMAs, once established, to fund water management activities.

Perhaps not surprisingly, the policy has bred some resentment among those who perceive an injustice: the previously disadvantaged - and for that matter, the majority of the population - must now pay for a service given to the previously advantaged free of charge. This is a sentiment likely to be echoed with regard to other services as well, as the limits of their existence become evident.

Sources: DWAF 1999, Mackay 2003.

Table A Water resource management charges in the Gariep basin for the 2003/2004 financial year.

<table>
<thead>
<tr>
<th>Water Management Area</th>
<th>Domestic/Industrial</th>
<th>Agriculture: Irrigation and watering livestock</th>
<th>Forestry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crocodile (West) and Marico</td>
<td>0.82</td>
<td>0.63</td>
<td>0.61</td>
</tr>
<tr>
<td>Thukela</td>
<td>0.33</td>
<td>0.33</td>
<td>0.31</td>
</tr>
<tr>
<td>Upper Vaal</td>
<td>0.96</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Middle Vaal</td>
<td>1.07</td>
<td>1.07</td>
<td>N/a</td>
</tr>
<tr>
<td>Lower Vaal</td>
<td>0.59</td>
<td>0.50</td>
<td>N/a</td>
</tr>
<tr>
<td>Upper Orange</td>
<td>0.38</td>
<td>0.38</td>
<td>N/a</td>
</tr>
<tr>
<td>Lower Orange</td>
<td>0.49</td>
<td>0.40</td>
<td>N/a</td>
</tr>
<tr>
<td>Fish to Tsitsikamma</td>
<td>0.89</td>
<td>0.50</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Source: DWAF 2003c

Of crucial importance is the need to impress upon water users the fundamental scarcity of water resources in southern Africa, and to adopt a pro-active approach to water conservation year-round, rather than to conserve only as a reactive measure of “crisis control” in times of drought. Lessons in
water scarcity management could be drawn from droughts during the 1980s to the 1990s – indicative of the region’s climatic stochasticity and quite possibly a result of global change. In 1995, such a drought led water managers in Gauteng Province to restrict water use unless major rain events occurred during the following summer; they did, and restrictions were lifted. Thus, by implementing quite a localised, short-sighted response, a potential signal to curb water waste was ignored and an opportunity lost to better manage water demand (Snaddon et al. 1998).

South Africa’s Water Research Act of 1970 led to the creation of the Water Research Commission (WRC), a statutory body funded by a levy on water use. The WRC has come to provide a stable research platform that has been extremely important for supporting the water sector in different stages of management and helped lay the foundation for the Water Act and its implementation. The WRC has identified knowledge management as one of its five key strategic areas of research, with the goal of effective dissemination of research for management as well as for public consumption.

Box 2.7 Water and Communities

At the local level, patterns of water availability and use differ at the three assessment sites. Being high in the catchment, water quality and quantity at Sehlabathebe appear to be good. Land use pressures of residential areas and heavy grazing have had negative impacts on some bogs and wetlands, but not on a sufficient scale to disrupt water quality or quantity in the Sehlabathebe villages. There is only limited use of groundwater. The national park also serves to protect some of the sponge areas from possible misuse. A difference can be observed in the sediment load of the two main rivers in the area: the Leqooa, which runs through a village, has a much higher silt load than the Tsoelikane River, which rises in the park, and joins the Leqooa some 4 kilometres beyond the park boundary.

In comparison, the Fish River area has more severe water constraints. There is limited groundwater potential in the area, and the water is very salty. Residents prefer to walk longer distances to collect water from dams than use hand-pumped groundwater. Surface water is in irregular streams and dams. Most households have domestic rainwater tanks, as well as additional storage drums. Woman who walk long distances to collect sufficient water from the various dams fill these drums. This has high opportunity costs, along with health hazards. Bulk water supply is due within the short term, which would provide communal standpipes.

In the Richtersveld, there is no bulk infrastructure for water delivery. Access to water limits all grazing activities. Key sources are fourteen watering points and the Gariep River itself. Domestic water is obtained from the river, and from natural springs. It is stored in large containers and transported as families move around RNP in search of grazing for their livestock. Currently there is sufficient water to meet the needs of the local population and their livestock.

Local communities monitor water quality as part of their daily use, and are very aware of changes. In the Great Fish River, runoff from cattle dips and siltation affect the water. Using a nearby state forest as a benchmark, people at Machibi village reported that during the past four decades, water quality on community land had deteriorated compared to that on state land. A participatory ranking exercise using stones as markers for the respective periods helped to develop the histogram below of perceived water quality on the two land types. Such monitoring may increasingly play a role in the decentralising water sector, where objectives for catchment management will be determined locally, based on stakeholder knowledge of river systems.
2.4 Food Services

Food is an essential service for human survival, and agriculture plays a role not only in food provision but also contributes to Gross Domestic Product (GDP) and job creation in the Gariep basin. Yet while agricultural production capacity has made tremendous leaps in recent decades through initiatives such as the “Green Revolution”, this has not come without severe costs to ecosystems and human health. Currently, agriculture in the Gariep basin, which contains the major “grain basket” of the southern African region as well as significant rangelands, is undergoing a new shift in the wake of political change.

South Africa’s apartheid policies dramatically affected the nation’s communal and commercial systems of agricultural production. During those decades, agriculture was highly regulated with all commodities marketed through central boards, such as the Maize Board, Wheat Board, and Meat Board. This highly regulated environment was also heavily subsidised, with a large number of financial incentives and disincentives determining agricultural practices. The outcome of this situation was a large number of perverse land-transformation and land use subsidies that promoted unwise land use practices and resulted in a large number of environmental disservices (see Biggs and Scholes 2002).

In the Gariep basin these led to significant soil erosion, desertification, and overgrazing. After 1994, the agricultural sector was deregulated and markets were liberalised by the democratic government. This new deregulated environment has had a significant impact on both the supply of and demand for food in the Gariep basin. At the household level, macro-economic effects affect food security, producer access to infrastructure, markets, and credit (Vogel and Smith 2002). The opening up of markets to forces of globalisation led to significant fluctuations in the prices of several agricultural commodities as well as a reduction in government funding for drought or flood relief. Collectively, these changes in the funding regime for agricultural produce have made individual farmers more vulnerable to global market fluctuations and local environmental perturbations.

Since the transition, fundamental changes in the labour laws relevant to farm workers and particularly allowances for “labour tenants” have compromised the perceived viability of numerous apartheid-style farming operations. In addition, a new tax law, which levies taxes based on farm size, has made it uneconomical to maintain large farms with low production. Innovative farming enterprises that reduce the risk profile of these enterprises (crop diversification, precision-farming methods, profit sharing, equity incentives for labour tenants, and even joint ventures) have emerged to set the pace in a rapidly evolving sector.

This assessment focuses on the services that produce cereal (maize, sorghum, and wheat) and livestock (measured in large stock units consisting of cattle, sheep, pigs, etc.), although the agricultural sector of the Gariep includes a number of other crops produced for domestic consumption and export. Along the middle and lower reaches of the Gariep River, for example, grapes, lucerne, and citrus are important products, while elsewhere along the river potatoes, onions, corn (maize-meal) sunflowers, mangoes, and dates are cultivated (Chutter et al. 1996).

The Gariep basin assessment illustrates graphically the difference between food production on the one hand and food security on the other. Although these are dependent concepts, they are not the same. Food production in the Gariep contributes to food, livelihoods, markets, raw materials foreign exchange, and surplus or “savings”. The relationship between agriculture and ecosystem services features strongly here. Supply-demand issues are also a useful way of expressing these relationships. In contrast, multiple drivers determine food security. In South Africa it is influenced by issues such as HIV/AIDS, access, and importantly household income (HSRC 2004) (see Box 2.8). This in effect means that numerous policy responses exist that fall outside the ambit of a simple balance sheet approach to food production. These issues are considered in turn below.

Food production

Only 14 percent of the total surface area of South Africa is available for crop production, water is in low supply and therefore an important restriction, and natural rangeland is deteriorating quickly throughout the region (Breytenbach and Fényes 2000). Due to previous government protection schemes, such as subsidies and tax relief, large (white-owned) commercial farms boomed under the previous government,
leading to theoretical self-sufficiency in the country by the 1980s. However, 2.3 million people were still nutritionally needy in 1989. In the past, increased demand was met by a finite increase in farmed area, improved technology, and cultivation techniques, but the crisis in the sector, peaking in the 1980s, led to slow market deregulation and liberalisation (accelerated after 1994) that now have increased the number of smaller and labour-intensive farms.

Approximately 90 percent of South Africa’s food consumption is met by domestic production (Kamara and Sally 2002), with sufficient calories and proteins being produced in the Gariep to meet the nutritional demand of its population as a whole. The Gariep basin is in fact a major exporter of cereal products. However, while South Africa is usually considered to be self-sufficient in food production at the national level, food insecurity at a household level still affects millions, a problem that was entrenched by past policies that restricted access to land and other resources (NDA 1997). The reality on the ground is that poverty, lack of access to resources, land tenure systems, and HIV/AIDS have created impoverished rural and peri-urban communities surrounding pockets of affluence and well-being, a situation that is also reflected in the imbalances in the agricultural sector. The challenge for this sector is to ensure that it maintains or expands present production patterns as the shift to smaller, less commercial farming units takes place.

Figure 2.17

(a) Mean annual cereal production per capita per district. These average figures reflect small pockets of arable land and not a broad pattern of land availability, particularly in the arid west of the basin. An annual production of 220 kilograms per capita is adequate to supply a person with sufficient nutritional energy. (b) Potential annual meat production per capita estimated from livestock biomass (in large stock units). Values are likely to be overestimated for the former homelands and Lesotho which have lower turnover rates in livestock. An annual meat supply of 60 kilograms per capita is sufficient to provide nutritional protein requirements. **Sources:** (a) CSIR (2002); (b) WSAM.

Cereals

Cereals form 54 percent of the staple food intake of the South African population, resulting in an annual requirement of approximately 170 kilograms of cereal per capita per annum. For a subsistence standard of living, approximately 220 kilograms of cereal is required per capita per annum (CSIR 2002). When analysed on an area-by-area basis, roughly half of the Gariep basin area is not self-sufficient in terms of crop production (Figure 2.17a). In some parts of the basin this is because environmental conditions or land is unsuitable for cereal production, particularly in the dry western areas. In other parts, this is because the population density exceeds the production capacity of the available arable land, such as in the highly industrialised Gauteng-urban complex and the rural former homeland areas such as KwaZulu and Bophuthatswana. Cereals produced in the Gariep basin are largely exotic and therefore usually produced at a considerable environmental cost. An additional problem in the former homelands and Lesotho is the poor yield, even in areas where environmental conditions are reasonably favourable for cropping. These areas characteristically suffer from a lack of yield-improvement technologies. This flows from the continued widespread use of traditional agricultural practices, reinforced by small farm sizes (~22 hectares) that restrict farmers’ capacity to produce enough capital to commercialise their farms and invest in such technologies.
Box 2.8 Food Security and Human Well-Being

Food security is the outcome of numerous interacting factors, including food production patterns. There are numerous ways in which food security is presently determined and can potentially be improved across the Gariep basin. On average, cereal and meat production in the Gariep basin supplies slightly more energy than is required by the 19 million people living within the basin, and enough protein to sustain a population three times as large.

In terms of cereal and meat production, the Gariep basin can supply 50 percent more dietary energy and three times more dietary protein than is required by the population (Figures 2.17a, b). Without exception, all the municipalities in the Gariep basin produce sufficient protein in theory to prevent malnutrition. Nevertheless, mal- and undernutrition seem to become increasingly common amongst the poorer section of the population. This anomaly therefore appears to be driven by social inequalities and disparities in income distribution rather than by a shortage of agricultural production. This is especially the case for meat, which remains largely unaffordable to the poor (see Box 2.9 for discussion about dietary proteins in local communities).

A major revision of land planning policy is necessary in light of both soil conservation and equitable distribution among citizens (Mkhabela 2002). It should not be ignored that local markets act as a cornerstone for agricultural development, and these markets are highly affected by people's economic security (Breytenbach and Fenyes 2000). Lastly, increasing access to food resources through policy interventions that contribute to poverty alleviation, land distribution, and more equitable distribution and local market mechanisms will not be sufficient in improving nutrition if there is not also an increase in nutritional education at school and adult levels. The diets consumed by most people in the Gariep can improve to promote health, but knowledge and understanding is currently lacking and hampered by low literacy levels (Langenhoven et al. 1993).

Despite these anomalies, the Gariep basin in general does provide 20 percent more cereal than is required by its resident population. This is due to extensive production in the maize belt that lies to the west of the South Africa-Lesotho border. The Gariep basin may therefore be considered self-sufficient in terms of crop production, but only half of South Africa's total crop production is used for domestic consumption. The remainder is exported or used as livestock feed (Central Statistical Service 1973 – 2000). This essentially means that numerous people living in a broadly self-sufficient basin are not guaranteed access to sufficient resources to meet their fundamental needs whereas local abundances are exported to support markets that are more lucrative. This is a classic example of an asymmetric global trade regime that favours exports, frequently at an immediate cost to local residents who cannot pay competitive prices to producers or negotiate the required degree of market access.

Since 1960, approximately 80 percent of the estimated arable land in the basin has been cultivated. The average yield of cereal crops increased from approximately two tonnes per hectare in 1960 to 3,5 tonnes in 1975 and has not increased since, despite increased private investment in agriculture. Cereal production has fluctuated along with climatic conditions around an average of 10 000 tonnes per annum (Central Statistical Service 1973 – 2000). Despite sufficient production of food, poor nutrition has become increasingly prevalent in the poorer population (Huntley et al. 1989), largely attributable to the increase in the price of food and more recently due to the systemic impacts of HIV/AIDS on local communities and rural livelihoods (Stokes 2003, Topouzis 2003). Producer prices have soared with inflation after the South African government withdrew rebates on cereal production (Central Statistical Service 1973 – 2000).

However, even if exports and animal consumption of cereal crops are excluded from the picture, cereal cropping in the Gariep basin would, in theory, be sufficient to provide the population's calorie requirements until 2010 under prevailing population growth scenarios. Improvement in cereal production within the basin is limited by the lack of arable land and the paralysis of yields on commercial land during the past two decades despite increased investment in cropping (Huntley et al. 1989). The adoption of new technologies in South African crop production is unlikely to cause a significant increase in yield. However, the use of genetically modified crops (if able to tolerate the South African environment and gain sufficient consumer acceptance and investor confidence) could lead to an improvement in cereal yields and an increase in cereal production, although such improvement is unlikely to provide the requirements of the growing population into the distant future. The future impact of genetically modified organisms (GMOs) in South Africa is still uncertain and awaits the outcome of a growing but still unresolved public and scientific debate (see http://www.saafost.org.za/gmo.htm). The greatest scope for
improvement in agricultural production probably lies in improving production efficiency in the former homeland areas, although this represents only a very small proportion of the Gariep basin’s area.

Livestock

On average, the Gariep basin provides enough meat to supply a population three times its current size of required dietary protein as estimated from livestock biomass. Consequently, protein production is theoretically adequate for most of the municipalities to supply the approximate 60 kilograms of meat per capita necessary to meet local protein requirements (Figure 2.17b). The most obvious exceptions are the urban areas, and the poor who cannot afford to purchase meat. Although the former homelands and Lesotho have sufficient livestock to provide the protein requirements of the population, livestock are traditionally considered social capital rather than production assets, so that the turnover in livestock for meat production is merely one-fifth of what it is on commercial farms. The presence of sufficient numbers of livestock is therefore not an indication of sufficient meat production.

Livestock biomass in South Africa has remained at approximately 18 million large stock units over the past two decades. Despite a marginal increase in pork production, South Africa’s red meat production has remained relatively constant at 850 000 tonnes per annum (Central Statistical Service 1973 – 2000). This can be considered to approximate the limit for potential stocking rates of the Gariep basin and South Africa as a whole, given that the rapidly increasing demand caused by population growth has not resulted in an increase in either livestock biomass or meat production (Huntley et al. 1989, Central Statistical Service 1973 – 2000). Instead, the per capita consumption of meat has decreased from 50 kilogram per annum in 1950 to 20 kilogram in 1995 (Central Statistical Service 1973 – 2000). Together with expanded export opportunities, the summed increase in demand relative to supply in the country has led to rapid price increases, causing red meat to be largely unaffordable, particularly to the poor.

Given the current production of meat in the Gariep basin, it is evident that there is sufficient production for the population on average, and malnutrition in the poor population sector can more rightly be attributed to structural and social problems than to inefficiency in production. Nevertheless, there is ample room for improvement in meat production in South Africa as discussed later in this section.

The contribution of commercial game farming is important as a source of supplementary income and may contribute some 10 percent to the gross income per farming unit in the region (Behr and Groenewald 1990), while fish farming is negligible in the basin. Neither achieves the same order of magnitude as commercial stock ranching. Wild meat or “bushmeat” provides an important safety net for local communities, however (see Box 2.10).

Demand

Nutritional demand in the Gariep basin, measured as the Recommended Daily Allowance (RDA) for calories and protein per person, is distributed unequally across the region (Figure 2.18a and b). As can be expected, the populous areas around Johannesburg and the East Rand in Gauteng Province where mining and commerce have drawn many workers, have the highest demand. South Africa has had a relatively steady annual population increase of about 2.8 percent for the past two decades, and the districts with the highest growth rates (> 4 percent per annum) are in Gauteng, some parts of KwaZulu-Natal and the North West Province (DEAT 1999). Moreover, results from nutritional studies have indicated a broad pattern of sufficiency in nutritional supply, but there is a need for more nutritional variation, as very few people actually eat a sufficiently varied diet (Langenhoven et al. 1993).
Figure 2.18 (a) Daily calorie supply estimated from cereal and meat production as a ratio of the recommended dietary allowance (RDA) of 2250 calories per capita per day; (b) Protein relative to energy production from cereal crops and meat production. A ratio of less than 0.015 would be indicative of insufficient protein production relative to energy. Sources: Large stock units were obtained from the WSAM; yield estimates and cultivated area for maize, sorghum, and wheat were obtained from the CSIR (2002). Notes: This average annual reproductive rate for South African large stock units between 1950 and 1995 was calculated as 0.22 per large stock unit. An average weight per large stock unit of 520 kilograms and utilisable meat production per carcass of 50 percent were used. Nutritional values per kilogram of cereals used: maize: 3700 calories, 80 grams protein; sorghum: 3705 calories, 97.8 grams protein; wheat: 3300 calories, 130 grams protein. RDA of 2250 calories per adult and 37.5 grams protein per adult were used.

Capacity of Ecosystems to Continue Providing Food Services

Water (soil) erosion, typically due to agricultural practices, influences more than 70 percent of South Africa. Soil degradation is thought to negatively influence plant growth, biodiversity, and agricultural production in South Africa; more certain is the contribution of soil degradation to siltation and eutrophication in reservoirs and dams, sedimentation in coastal estuaries, and modifications to riparian systems (Hoffman et al. 1999). The primary cause of degradation across the Gariep is ecosystem mismanagement through overgrazing, water mining, and cereal production on marginal lands. These often result in desertification in this largely water-limited landscape.

The United Nations Convention to Combat Desertification (UNCCD) requires countries affected by dryland degradation and which ratify the convention to prepare and implement a National Action Programme. To work toward this objective, a study by the National Botanical Institute (NBI) and the University of the Western Cape’s Programme for Land and Agrarian Studies (PLAAS) began in 1997 to assess the state of desertification in South Africa. Along with a review of the relevant literature and several case studies, this work produced a consensus map (Figure 2.19) of soil and vegetation degradation that represent the opinions expressed by 453 people who attended a series of workshops devoted to the topic.
According to the workshop results, soil degradation is perceived to be more of a problem on communal lands than in mainly commercial districts. Participants believed that some forms of degradation are decreasing, mainly in commercial farming areas, for reasons that included better farm planning, subsidies for conservation works, better legislation, education, town planning, reduced stock numbers, and conversion to game farming. However, they indicated that increases in the rate of soil degradation, mainly in communal areas, were in part caused by large influxes of people to peri-urban areas, lack of infrastructure, betterment planning, poor education, poor runoff control, increases in stock numbers, and shifts to different breeds of grazing animals (Hoffman et al. 1999).

Climate change is expected to affect subsistence and commercial food production in numerous ways, not all of which will be negative. For example, the result of a national study of the impacts of climate change on the agriculture sector suggests that declines in precipitation and increased temperatures would result in mixed responses (van Jaarsveld and Chown 2001). For rangelands, grassland losses in production would likely be offset by increases in CO$_2$ fertilisation, while savannah grasses appeared more sensitive with an anticipated 20 percent decline in production. Savannah elements would also encroach on grassland areas, leaving livestock largely unaffected with some impact on the cattle production potential. Moreover, both the commercial aforestation and cereal production sectors would emerge largely unscathed, with a combination of CO$_2$ fertilisation and the development of resistant cultivars compensating for anticipated precipitation-induced production losses. In addition, some crops will become more susceptible to disease, as some diseases will be able to spread to areas from which they were previously restricted by climatic conditions.

While the effect of current regulations and policies are not yet overwhelmingly evident in the agricultural sector (Vink et al. 1998a), there is evidence of some of the arable land that was previously owned by whites being transferred into non-white hands (Vink and van Zyl 1998). As the sector becomes more market-based, there is a move away from large technology-rich farms to smaller, labour-intensive farms that not only contribute to job-creation and food, but also significantly to GDP (Vink et al. 1998a). As the policies of land reform, non-discrimination, and improved financial services remove disparities between large farmers and smallholders, the agricultural sector should become more diverse in terms of crop type, farm size, and agricultural practice, and more able to withstand market fluctuations. However, the removal of subsidies could present some initial barriers for small and emerging farmers (see Box 2.9). Horticulture, poultry, and sugar production should increase with the demand from export markets as well as the effects of an increase in general income in the Gariep basin, which usually leads to less demand for staple grains and a higher demand for red meat (Vink et al. 1998b, Biggs and Scholes 2002). Especially in marginal crop-producing areas, an increase in livestock production can be expected and the current trend of agricultural exports growing faster than imports may continue (Breytenbach and Fenyes...
This will increasingly promote a drive towards more lucrative exports and inflate prices, again at a
cost to the less fortunate. The government should make every effort to stabilise grain markets, however,
if the downward trend in the production of these staple food sources is to be reversed (Breytenbach and
Fenyes 2000).

Box 2.9 Subsidies and the Food-Water Link

One of the fundamental policy issues that the South African government must contend with in the near future
revolves around inconsistencies in its policies for land redistribution and water provision. Because of the repeal
of heavy subsidisation of agriculture by the state, farming the marginal land that was once profitable to cultivate
is no longer economically viable. This is the land that is most likely to become available through the current
system of land redistribution in which trades are made by consent, but many new buyers entering the market will
not have to means to purchase inputs to make this land productive (MacKay 2003).

While the now-retired riparian rights principle previously declared water sources that flowed across farmland the
property of the farm owner, irrigation is no longer “free.” In most areas, it is one of the highest priced water uses,
reflecting its low economic efficiency. This fact makes the prospect of agricultural land reform especially
challenging, and emphasises the need for investments in types of agriculture and other land uses that are less
water-intensive to generate social benefits.

Response Options to Manage Food Services

MANAGING ECOSYSTEMS THAT PRODUCE FOOD

In the Gariep basin, important responses to improve the resource base and state of the ecosystem
include improving soil conservation, controlling agricultural water pollution, and suppressing the spread
of invasive alien species, optimising land use patterns across the available landscape, as well as water
pricing and demand management as ways to improve the efficiency of irrigation. Salinisation is a further
problem in irrigated areas that requires attention along with the more general rehabilitation of soils. The
wider use of natural resources, such as indigenous fish stocks in dams, could enhance food production.

TECHNOLOGICAL RESPONSES

A host of technological responses exist, which include increasing livestock turnover rates, especially in
former homelands and Lesotho. Although the full capacity of current grazing area seems to have been
reached in terms of stocking rates, an increase in livestock biomass can still be facilitated by
improvement of grazing by the conversion of natural grazing into pasture (Huntley et al. 1989).
Increasing pig farming could also be an option to increase protein production, although the associated
environmental costs may be high. In recent years, biotechnology has emerged as a response to
environmental and agricultural problems in Africa, and has been attended by significant controversy for
both environmental and social reasons. Alternative integrative methods such as organic farming present
a more holistic view of agricultural production and ecosystem conservation, although at present these
remain loosely defined and have yet to be adopted on a significant scale. Improved disaster warnings
and advisories would also be of great benefit.
LEGAL, INSTITUTIONAL, AND ECONOMIC POLICIES

This assessment draws attention to the fact that trade asymmetries are not only an international phenomenon that affects the relationship between international trading partners (Stiglitz 2003) but are also a national issue, where sectors of society are unable to access local resource markets due to their low incomes. Thus, asymmetries are pervasive across societies, and particularly in South Africa, where large sections of the population were historically disenfranchised. Appropriate national policy interventions should be considered to alleviate this imbalance and could be as fundamental as a basic income grant. One way to alleviate some of the economic stress of providing such a grant could be to restrict their distribution to females only (Erasmus and van Jaarsveld 2002), although this could introduce new social tensions.

Possibilities abound to reform food production through policies. Continued land and market reform are paramount. This would include increasing the amount of land transferred to non-white hands, and from large technology-rich farms to smaller, labour-intensive farms that contribute not only to food production and job creation but generate substantial income (Vink et al. 1998a). Policies of land reform, non-discrimination, and improved financial services, by removing disparities between large farmers and smallholders, should make the agricultural sector more diverse in terms of crop type, farm size, and agricultural practice, and more resilient to market fluctuations.

Importation of food, where possible, would reduce some of the pressure on land and water resources. Implementation of a certification programme would encourage production according to more sound ecological regulations, and would increase awareness among consumers. Integrated land use planning and analysis of trade-offs between, for example, cultivation and urbanisation, would help to identify optimal investments in agriculture.

The best conceived restructuring plans for the agricultural sector will fail if the issue of HIV/AIDS is not confronted squarely. There is already a better understanding of the vulnerability of the agricultural sector to HIV/AIDS. Small farming households are particularly vulnerable to the combined effects of a decline in household labour quality and quantity, less household disposable income, the erosion of the household asset base, and a decline in experience and skills (Topouzis 2003). The issue of HIV/AIDS emphasises the shortcomings of a production-oriented approach towards food security. Appropriate interventions should also transcend simple health-dominated approaches that are preventative but deal with the full spectrum of the social, economic, and environmental problems created by the prevalence of HIV/AIDS in society. There are a number of interventions which can be adopted to minimise the impact on HIV/AIDS on food production. This includes promoting low-input agriculture through use of lighter ploughs and tools, improved seed varieties that demand less weeding, inter-cropping or minimum or zero tillage, and access to potable water and fuel-efficient stoves for households headed by the elderly, youths, or orphans (Stokes 2003, Topouzis 2003).

SOCIAL, BEHAVIOURAL, AND COGNITIVE RESPONSES

Nutritional education for adults and at schools is an important response that would help to combat nutritional problems that are rooted in a lack of awareness. Equally important is raising awareness regarding conservation measures and economic instruments that may be available to farmers. Use of forecasts by farmers to develop preparedness strategies is slowly being introduced and accepted. The establishment of programmes aimed at creating awareness and access to information must become a top priority to ensure that these basic nutritional needs are met.
Box 2.10 Food and Communities

Different patterns in food availability are clear between local assessment sites. At Sethlabathebe, most families aim to produce food locally from fields and gardens. However, the majority of people are food insecure in that annual harvests are rarely sufficient to meet household needs until the following planting season. Additionally, they retain part of the seed for planting. Maize is the preferred food, but has a very low success rate in the high mountains. Thus, food production is supplemented by purchased food and collected wild foods (edible herbs and bushmeat). Local communities obtain considerable quantities of their dietary protein from bushmeat and the plant matter they consume. Key reasons for the poor food production are (i) a short growing season, (ii) possible severe weather even during the growing season, (iii) a perceived decline in fertility of already poor soils, (iv) planting maize of exotic origin and ill-suited to the area, and (v) lack of draught animals because of lack of ownership (45 percent do not own livestock) or theft of animals.

The Government has several food programmes in place, including rations for the elderly, and the distribution of hybrid seed, but it rarely arrives in time to the more remote areas. Apart from chickens, livestock are rarely slaughtered for food, other than at celebrations, rituals or funerals. Reduced food security and production are perceived to be caused by declining soil fertility due to reduced inputs, increasing stock theft (which means the victims can no longer plough), an increasing human population, meaning that new households no longer have an automatic right to an arable allotment, and fallow periods that have decreased or ceased altogether.

In the Great Fish River, the primary sources of protein are chickens and purchased meat. Livestock are rarely slaughtered for consumption except at special occasions. Animal numbers have been reasonably static over several decades, interrupted by crashes brought about by drought. Arable activity is limited. Hence, the bulk of food items (protein and staples) are purchased from local spaza shops or shops in the closest towns. Some work indicates that perhaps as much as 90 percent of household cash income is spent on food. This is supplemented by collection of wild foods. Overall trends that respondents describe are a decline in agriculture and a decline in ownership of livestock, with a corresponding increase in reliance on the cash economy, paid for by state grants and migrant remittances.

In the arid and remote Richtersveld region, arable cropping is not practised. All households stated that their main source of protein is the herders’ own goats and sheep, supplemented with fish caught from the river. One or two animals are slaughtered per month per family, providing an average of 3 kilograms of meat per person per month. Cash from sales of livestock and migrant remittances is used to purchase dietary staples such as bread flour, maize meal, sugar, and tea, as well as tinned foods and luxury items, from shops in the neighbouring villages or towns further away. Over 90% of herders claimed to collect edible fruits and plants, albeit they were not regarded as significant components of the diet. At least 60% of households consume bushmeat comprising small game, birds, and eggs. This is probably an underestimate, since they are not allowed to do so. According to respondents, the main changes have been a decrease in use of bushmeat and fish and an increase in the use of purchased items. This is attributed to increasing regulations regarding hunting since the establishment of the Richtersveld National Park, and an increase in shops in the neighbouring villages and items for sale at the diamond mines.

Climatic factors and policies have affected the demand for sources of food from natural resources in the villages in the Great Fish River area in the past. The identified key sources of food in households in a typical village are arable fields, livestock, woodlands, shops, familial exchanges, and a government feeding scheme. A trend of dependence on local shops has been identified. Food was the biggest household expense, and shops were highlighted as one of the most important sources of household food.

At Richtersveld, people rated starch staples as their most important food, followed by beverages (coffee) and then meat and milk (Table 1). This is contrary to expectations, as starch staples in this area can only be purchased at shops.
2.5 Energy Services

The daily lives of people are improved immensely by the energy services provided by ecosystems, whether in the form of coal, wood, water, or renewable sources. Energy is also crucial to the economic well-being of the industrial, transportation, agricultural, and commercial sectors within the Gariep basin. Because of the wealth of coal deposits in the Highveld region of the Gariep basin, low-cost electricity has allowed for the growth of industry, transportation, and mining, particularly within Gauteng Province. However, its provision is at considerable costs to the environment and human health. In the domestic energy sector, the dichotomous nature of South Africa’s economy, which comprises both developed and developing world facets, is apparent (Williams and Shackleton 2002). In the environment of the urban, developed world in which 53.7 percent of South Africa’s population lives, most household energy needs are supplied in the form of electricity from the parastatal company Eskom (see Box 2.11) (Williams and Shackleton 2002). Lesotho was formerly dependent on imported electricity from South Africa; however, the Lesotho Highlands Water Project (LHWP) recently brought the ‘Muela Hydropower Station online as the national supplier of electricity (Lesotho Department of Energy 2002). This has made Lesotho self-sufficient in electricity production, with an energy grid that reaches a considerable portion of the country though it only serves the domestic needs of a small percentage of the population.

Within the poorer rural and peri-urban communities of the Gariep, 80 to 99 percent of households meet their energy needs with biofuels, which include wood from trees and shrubs, dung and crop residues (Williams and Dickson 1996) while coal fires, paraffin, and candles are widely used. Both developed and developing energy sectors need to move towards using more sustainable energy sources. However, the sustainability of energy sources perceived to be more “environmentally friendly” is still contentious in the region and forms the subject of considerable public debate and research. In the rural and informal economic sector, biofuels remain an important energy source due to the prohibitive costs of electricity or fossil alternatives for most households (Williams and Dickson 1996). For example, in Lesotho some sixty percent of the total energy consumption is biomass-based (Lesotho Department of Energy 2002).

<table>
<thead>
<tr>
<th>Category</th>
<th>Average rating (max=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch staples</td>
<td>5.0</td>
</tr>
<tr>
<td>Beverages</td>
<td>4.7</td>
</tr>
<tr>
<td>Meat, milk</td>
<td>4.6</td>
</tr>
<tr>
<td>Store-bought</td>
<td>2.7</td>
</tr>
<tr>
<td>Fish</td>
<td>2.1</td>
</tr>
<tr>
<td>Perishables</td>
<td>1.4</td>
</tr>
<tr>
<td>Vegetables</td>
<td>1.2</td>
</tr>
<tr>
<td>Game</td>
<td>0.8</td>
</tr>
<tr>
<td>Cultivated</td>
<td>0</td>
</tr>
</tbody>
</table>

At Sehlabathebe, maize meal was the most frequently consumed staple food on a monthly basis, eaten on average 82 times. Rape was the next most frequently eaten staple, at an average consumption of 24 times, followed by cabbage at an average of 17, bread on average 7, spinach 6, sorghum on average 4 and beans on average 1.3 times per month. Most people had animal protein less than four times per year and many consumed it only at funerals.
Supply

The South African electrification grid covers the majority of the Gariep basin except for the sparsely populated areas of the Northern Cape (Figure 2.20a) (MDB 2001) and Lesotho. The greatest percentage of electrified households lie within the urban Gauteng Province and the greater Bloemfontein area. Where the Eskom grid does not extend, electricity is supplied through other sources such as generators or privately owned solar panels (Figure 2.20b) (MDB 2001) to those who can afford them. Although Eskom’s national household supply grid is increasing in size, it is not economically viable to extend the grid to all remote areas (EIA 2002), pointing to the increased need for household energy self-sufficiency in the future.

Coal-burning thermal power stations generate the majority of Eskom’s electricity supply. These are situated on the Highveld close to the coal mining areas in order to defray the high transportation costs. Coal is currently economically preferable to other energy sources because externalities such as high levels of air pollution, global warming emissions, consumption of large amounts of freshwater, wastewater emissions, and occupational health effects are not accounted for in the cost of coal-generated electricity in South Africa (see Box 2.12) (van Horen 1996).

It is in the more environmentally sustainable means of power generation such as hydro-, solar, and wind power that the Gariep basin has considerable potential, although impacts on the environment, biodiversity, and aesthetics need to be assessed. The Northern Cape Province that comprises a large portion of the Gariep basin has the highest solar intensity over the largest area in the world, leading to its official designation as the “Solar Province of South Africa” in 1998. This has not gone unnoticed by Eskom, which, through a partnership with Shell Solar South Africa, has launched a programme to install modular solar home systems within remote areas, especially in the Northern Cape where insulation rates are high. The favourable conditions have led Eskom to plan two large-scale concentrated solar power-generating facilities within the province (EIA 2002).

Box 2.11 The role of Eskom

- Parastatal company founded in 1923
- Generates and supplies 95 percent of South Africa’s electricity
- Over 200 000 newly electrified houses per year.
- The Integrated National Electrification Programme aims at universal household access within 10 to 11 years.

Source: www.eskom.co.za

Source: ERI 2001
Lesotho is believed to have a total hydropower potential of 450 MW, although only 76 MW is currently being exploited from the following hydropower stations: ‘Muela (72 MW), Mantsonyane (2 MW), Mokhotlong (0.67 MW), Tsoelike (0.4 MW), and Semonkong (0.4 MW) (Lesotho Department of Energy 2002). In South Africa, two dams on the Gariep River, the Gariep Dam (360 MW) and the Vanderkloof Dam (240 MW) generate hydropower. The further development of large-scale hydroelectric plants in South Africa is unlikely due to the lack of remaining suitable sites and declining popular support for large dams related to their detrimental environmental and social effects.

Biofuels supply a large proportion of the energy used in the rural and informal sectors. Rainfall is the major determinant of fuelwood production across the Gariep basin (Williams and Dickson 1996), with supply being dictated by the strong gradient in the amount of precipitation across the Gariep basin (Basson et al. 1997) from moist tropical areas in the east to arid areas in the west. In the arid western part of the Gariep basin, less than one percent of the land area is covered by bushland or thicket. However, in the tropical areas in the east, there is a large fuelwood supply from communal land, forestry residuals, bush clearing within conservation and stock farming areas, as well as from the clearance of new cultivation and control of invasive woody vegetation. Particularly in areas where there is a surplus of fuelwood from forestry residuals and bush clearing, there is a large informal industry in the commercial distribution and supply of fuelwood to nearby areas (Shackleton et al. 2003a, Gandar 1994). The sustainability of this informal fuelwood industry is frequently questioned. In the intermediate grassland regions of the basin where wood is less available, and where winter frosts and even snowfalls occur, the local population depends on a mix of available biofuels such as dung, shrubs, and crop residues and also place considerable premiums on access to more expensive coal or paraffin as substitute fuel sources.

In Lesotho, those who are not connected to the national grid continue to meet their energy needs primarily with biofuels in rural areas (United Nations 2000), while in the urban and peri-urban areas most households depend on paraffin for lighting and cooking and candles for lighting (Lesotho Environment Secretariat 2000).

Demand

The industrial sector is the largest consumer of energy across the Gariep basin, consuming 41 percent of South Africa’s total energy consumption and 57 percent of the country’s electricity in 1996 (ERI 2001). South African industry, notably mining and iron, steel, and non-ferrous metal manufacturing, is energy intensive, relying on coal directly or indirectly through the production of electricity as an energy source (ERI 2001). The majority of heavy industry areas within the Gariep basin are based in the Gauteng Province in close proximity to the Highveld coal-burning thermal power stations. Furthermore, most residential and commercial sectors are within Gauteng Province while both sectors are growing within the greater Bloemfontein area.
Within the residential sector, most of the South African urban population has access to electricity; however, the majority of poor households use biofuels as their primary energy source for heating, cooking, and lighting. In rural areas, despite the electrification drive in South Africa since the 1994 election, biofuels are still widely used as most households cannot afford monthly electricity payments or electric appliances (Williams and Dickson 1996, Williams and Shackleton 2002). The demand for any particular energy source depends on the cost and availability of other energy sources, the household size, financial and social status (Shackleton et al. 2003a). Consequently, the quantities of biofuels used and their use relative to other available energy sources, for example paraffin and gas, vary greatly across the Gariep basin (Shackleton et al. 2003a), as shown in Figure 2.21a and b.

In the Tugela basin, there is high variability in demand for fuelwood due the spatial variability of the landscape. Households in the Tugela use between 327 to 630 kg/month, whereas in the Fish River basin, households use an average of 617 kg/month, and in the more arid areas near Namaqualand, about 108 to 342 kg/month is used per household (Williams and Dickson 1996).

Access

Like the free basic water policy, a programme of “free basic electricity” commenced in 2001 to provide 50 KW free of charge each month to poor users, yet delivery via regular paid meter systems has posed challenges and the testing of alternative delivery systems is in pilot phases now. Overall, electrification is one of the success stories of the sector, with about 70 percent of the country now electrified, 80 percent in urban areas, and 50 percent in rural areas (Basson 2003).

Capacity of Ecosystems to Continue Providing Energy Services

As long as coal reserves are exploitable, energy in the form of electricity should continue to be available, in theory if not in reality. The limitations of coal are more likely to revolve around its environmental as well as social externalities, which may eventually motivate a shift to other energy sources. Many of the biofuel sources, on the other hand, are vulnerable to local depletion in the foreseeable future if they are not sustainably managed (Williams and Shackleton 2002). In some locations, available and affordable alternatives could play an important role in stemming the overharvesting of fuelwood.
Lesotho’s high rainfall and runoff have enabled the country’s self-sufficiency in hydropower production, which is not likely to change in the near term, although the impacts of its dams certainly warrant careful monitoring. Continued production is also dependent on the success of Lesotho’s partnership with South Africa. Biofuels, especially for the population residing in the urban areas, are harvested from South Africa, contributing greatly to the depletion of natural vegetation near the South African-Lesotho border.

Box 2.12 Energy Services and Human Well-Being

Due to the low price of coal compared to other energy sources, South Africa and its neighbours rely heavily on coal and biofuels as energy sources. Coal burning in heavy industry and thermal electricity generation on the Highveld, as well as the high reliance on biofuels domestically, leads to high carbon dioxide and sulphur dioxide emissions within the Gariep basin. The use of biofuels can also have negative impacts on human health associated with respiratory diseases resulting from long-term use of open fires for cooking and heating, particularly when used indoors in poorly ventilated rooms (see Chapter 2.7, Air Quality). Simple technologies, such as stoves with chimneys, can significantly reduce these secondary effects and reduce health risks but are not widely used at present (Williams and Shackleton 2002).

Although South Africa’s emissions of greenhouse gases do not compete with those of the United States of America or most developed countries, South Africa has the highest per capita carbon emission level in Africa (EIA 2002). However, due to the current price, proximity, and abundance of coal, there has been little investment in sustainable and environmentally friendly energy sources. Current South African coal reserves are expected to last for another 300 years at current rates of consumption (van Tienhoven 1999). Despite long-term historical investments and subsidies on fossil fuel-based technologies, the technologies for clean renewable energy production systems do exist and are continually being explored on an experimental and commercial basis for solar, wind, and micro-hydropower. Several renewable technologies are already cost-competitive in South Africa: solar passive design in buildings, solar water heating in commercial applications, ocean current electricity generation, and the Green Tower, a combined solar chimney and greenhouse that produce 400 MW for 24 hours at a cost of nine cents per kilowatt, making it cheaper than coal-fired electricity (see http://www.greentower.net). During 1985 and 2000, the conventional fossil fuel based electricity generation in South Africa increased to 139 percent while the workforces were reduced by 46 percent. By contrast, renewable energy technologies have the proven potential to create many new sustainable jobs. By 2020 wind energy alone could employ more people than the current coal-fire based electricity in South Africa (Agama 2003).

Response Options for Managing Energy Services

MANAGING ECOSYSTEMS TO ENSURE ENERGY SERVICES

Rural populations in the Gariep basin have a high reliance on fuelwood, which is detrimental to their health and leads to degradation of rangelands (Williams and Dickson 1996). This reliance has prompted responses that focus on both demand and supply management. One strategy by the South African government to reduce the reliance on fuelwood as an energy source has been to extend the national electricity supply grid. This initiative has had mixed success as many households with access to electricity cannot afford either the monthly charges or appliances and therefore continue to use fuelwood as a primary source of energy (Williams and Dickson 1996, Williams and Shackleton 2002). As fuelwood is typically depended upon by rural and lower income groups, responses and interventions need to be placed in the wider context of rural poverty (Williams and Dickson 1996).

Conversely, other strategies focus on ensuring the long-term supply of fuelwood as an energy source. The ‘energy crisis’ paradigm of the 1970s to the 1990s (Williams and Shackleton 2002) provoked a response by the South African government to create the Biomass Initiative (BI) or ‘Plant for Life’ project (Williams and Dickson 1996). The Department of Water Affairs and Forestry, together with Forestek (now Environmentek, CSIR) and the Institute for Natural Resources implemented several support and management initiatives including extension training and the establishment of woodlots. Although the BI too was met with mixed success (Williams and Dickson 1996, Williams and Shackleton 2002), the main reason for its failure was that the needs of the intended beneficiaries were not included in the planning stages of the project (Williams and Shackleton 2002).
TECHNOLOGICAL INTERVENTIONS

Although stoves with chimneys can significantly reduce consumption and reduce health risks associated with burning of fuelwood, they are currently not widely used. They have been found to be too expensive and are not as practical as conventional open fires for cooking, heating and providing light (Williams and Shackleton 2002). Top lit Scotch fires (known as Basa Magogo or Basa Mama) have been demonstrated to reduce coal burning by as much as 30 percent and can consequently decrease air pollution by 42 percent (Schoonraad and Swanepoel 2004).

Eskom is presently investigating the option of ‘micro-hydro’ plants that will utilise the potential of smaller rivers in remote areas to supply electricity to isolated communities where the extension of the national grid is not economically feasible. Hydroelectric dams are also useful in the ‘storage’ of electricity, for example in the Drakensberg Pumped Storage Scheme. These facilities are crucial in the management of electricity as the peaks in supply of electricity from hydro and wind generation plants do not necessarily coincide with the peak times of electricity usage.

Although there are strong incentives to generate wind power within the Gariep basin, little implementation has occurred beyond a few investigative projects. This is an ecosystem service with much potential, as it provides an economically viable form of energy that provides a large number of jobs with comparatively few environmental or social costs (for a more detailed analysis of the potential for wind power in South Africa, see http://www.esi.co.za).

A number of small-scale solar projects are in use, including the Green Tower, noted above, and continue to hold promise. Meanwhile, Eskom’s most recent foray into nuclear energy, the Pebble Bed Modular Reactor (PBMR), has kept this option for energy production on the table, amid much controversy (see Box 2.13).

LEGAL, INSTITUTIONAL, AND ECONOMIC POLICIES

A number of policies have been put into effect to address energy services. On the biomass issue, the National Forestry Action Programme (DWAF 1997b) builds on the BI and enables the Department of Water Affairs and Forestry to provide support for the development of community forests. Defined in the White Paper on Sustainable Forest Development in South Africa, a community forest aims to meet local social, household, and environmental needs and to favour local economic development through the sustainable utilisation of forests. The Working for Water initiative (mentioned in Chapter 2.3 on Freshwater; see also Box 2.25 in Chapter 2.9), which aims to control invading alien plant species to improve the long-term supply of ecosystem services, also forms part of this strategy.

Energy trading through improved regional grids would possibly present opportunities for South Africa to import electricity via hydropower produced in the Zambezi basin, as well as to export coal-fired power to other countries (van den Bovenkamp 2002) in addition to Lesotho. Participation by South Africa and other countries in the region in international emissions trading as stipulated by climate change protocols could also shift the energy balance significantly in the future.
Box 2.13 The Nuclear Energy Debate

Nuclear energy in the Gariep basin has received a large amount of attention due to the controversial development of the Pebble Bed Modular Reactor (PBMR). Developed for the parastatal utility Eskom, the PBMR is a high-temperature helium gas-cooled nuclear reactor that is seen as a practical and cost-efficient form of nuclear power generation. Advocates of the PBMR technology have hailed it as a “new sustainable clean source of energy” that is “non-fossil, non-carbon, and non-air-polluting” and can meet the energy needs of South Africa over the long term. The modular reactors can be built in close proximity to demand centres, providing there is an adequate water supply for cooling. This is particularly appealing in the parts of the Gariep basin that are far from the coal generation plants in Mpumalanga Province and currently pay high transmission costs for power.

Opposition to the development of the PBMR is fierce, due to its negative social, economic, and environmental facets (see Earth Life’s webpage: http://www.earthlife.org.za). One problem with nuclear energy is that while the nuclear power plant itself may be non-fossil, non-carbon, and non-air polluting, the fuel’s lifecycle includes the mining and refining of uranium, which emits high levels of carbon and can cause long-lasting damage to aquifers and soils. In comparison to renewable energy, energy generated from nuclear power releases four to five times more CO₂ per unit of energy produced when the entire nuclear fuel cycle is taken into account. There is also concern regarding the storage of nuclear waste and the true environmental and financial costs of decommissioning the plant at the end of the project’s lifetime. (For a full discussion of the nuclear fuel cycle see the World Nuclear Association’s webpage http://world-nuclear.org).

Members of the American Physical Society (APS) have suggested the possibility of a graphite fire similar to that in Chernobyl in 1986. Despite this, proponents of PBMR have proposed a reduction in the confinement of the reactor and the emergency planning zone from 16 kilometres to 400 metres.

A number of alternatives to nuclear energy exist in the Gariep basin. There is large potential in the western regions for wind generation, which is truly non-fossil, non-carbon, and non-air polluting. Wind power creates ten times as many jobs as nuclear power and the manufacture and assembly costs can be recovered in two to three months of operation. While the implementation of PBMR needs further consideration, the social, economic, and environmental costs of nuclear power in the long term and the availability of alternative sources of energy that exist need to be considered thoroughly. A recent South African Royal Society report (Sellschop et al. 2003) provides a scientific perspective on this debate.
Box 2.14 Energy and Communities

At the local level, the rural nature of all three sites means that households are dependent upon biomass fuels as their primary energy source. However, because of differing natural abundance of woody biomass, and contrasting human population pressures, energy availability and security differs between the three sites. At the Lesotho site, the forest cover is very limited, and hence the primary sources of biomass fuel are dwarf shrubs (*Chrysocoma ciliata*, *Euryops evansii*, *Inulanthera calva*, and *Helichrysum* spp.), exotic trees, and cow dung. Households without livestock may assist owning households to collect dung from kraals and shape it into 'bricks.' In return for their labour, the assisting household will receive a portion of the dung 'bricks' to use as fuel. Dung is a preferred source of fuel and burns more evenly and longer than do the shrubs. Some households harvest wood from the small pockets of indigenous forest. A key species is *Leucosidea sericea*. Local perceptions are that there has been little change in the abundance of trees and shrubs over the last few decades. However, escalating stock theft has impacted on dung as a fuel resource. Households that lose many animals to theft experience not only the hardship from the direct loss of animals, but also the loss of ready access to their primary energy source.

In the Fish River up to 70 percent of households use fuelwood for cooking, supplemented by paraffin. Up to two dozen species are used. Preferred species are *Acacia karroo*, *Maytenus undata*, *Pappea capensis*, *Ptaeroxylon obliquum* and *Schotia africans*, with preferences influenced by the species' rate of combustion, calorific value per unit biomass, and amount of smoke produced. Mean household use is approximately 2 500 to 3 000 kg per year. There is a perception of decreasing supplies, as people have to walk increasingly further to obtain adequate supplies of some species. Whilst deadwood is the favoured source, chopping of livewood occurs regularly because of a shortage of deadwood, thereby potentially compromising ecosystem integrity and human well-being. Some households cut wood to sell. Very few trees are maintained in residential areas or arable fields. Some regeneration, especially of *Acacia karroo*, is visible on abandoned lands.

In contrast, availability in Richtersveld is high because of the low human population densities and the high productivity of the Gariep floodplain. Fuelwood is the primary energy source for the Richtersveld National Park pastoralists. Currently levels of harvesting appear sustainable, with collecting confined to deadwood collected in the vicinity of temporary stockposts along the riparian fringe of the Gariep River (Figure a, below) (Shackleton et al. 2003b). There is an abundance of deadwood even of key species in the riparian fringe, which is the main harvesting area. Principal and preferred species are *Euclea pseudobenus* and *Ziziphus mucronata*. During the last ten years or longer, respondents felt that there was sufficient wood for their needs, and that there had been no change in availability.

In contrast, on the Namibian side of the river, fuelwood stocks are declining with increased human settlements in association with mining and grape farming (Stewart 2003). Fuelwood shortages affect the well-being of local people: trees are scarcer closer to villages (Figure b) and people walk far to obtain an adequate supply.

![Figure (a):](image1.png) **Figure (a):** Percentage dead wood on preferred fuelwood trees in relation to distance from stock posts in Richtersveld National Park.

![Figure (b):](image2.png) **Figure (b):** Relationship between tree density and distance from the village centre at Pikoli, Great Fish River Valley.
SOCIAL, BEHAVIOURAL, AND COGNITIVE RESPONSES

Tremendous potential exists to improve energy services through the realm of behavioural change, particularly as more people are expected to lead increasingly energy-intensive lifestyles in the Gariep basin. Demand-side strategies that focus on energy-efficient and energy-saving practices need more encouragement in the region. Efforts to lead initiatives in these areas should come from both the private and public sectors, including Eskom, who would stand to benefit from the potentially large cost-savings. Interestingly, while current debate attends the issue of nuclear power as an alternative to coal-based electricity, other energy sources that would also benefit from such deliberation and exposure have not merited the same attention.

2.6 Mineral Services

While minerals are considered a natural resource, they are not readily characterized as an ecosystem service, possibly due to their location underground and the highly visible ecological destruction that results from extracting them. However, the historical and current prominence of mining in the Gariep basin, the recent shift in focus to more sustainable mining practices, and the links between mining and other ecosystem services merit a place in this assessment. The important role mining plays in the local economy also means that it features significantly, in ways both positive and negative, in the constituents of human well-being in the basin.

Some one-third of the gold ever mined worldwide comes from the deposits of the Witwatersrand conglomerate reefs near Johannesburg (Sampat 2003). South Africa leads the world’s production of numerous minerals, including gold, alumino-silicates, chrome ore, ferrochrome, platinum group metals (PGMs), vanadium, and vermiculite, but it is gold, diamonds, coal, and platinum production that are the backbone of the industry (African Development Bank 1993, COSATU/NUM 2001, Makwinzha et al. 2001). The bulk of this production occurs in the Gariep basin (Figure 2.22) (Hoadley et al. 2002). Mining contributes significantly to the South African economy. It provides 8.1 percent of its total GDP, as well as employment, infrastructure development, secondary industry development, export earnings - of which mining and minerals account for some 30 percent (Eskom 2003) - and gross fixed capital formation (10.7 percent) (African Development Bank 1993, Granville 2001, Makwinzha et al. 2001, Economic Advisory Unit of the Chamber of Mines 2002). Lesotho’s total mineral production, mainly kimberlite diamonds, earns a comparatively modest US$ 0.5 million per annum (Lebesa 2003), but the South African mines have been a major source of employment for Lesotho.

![Figure 2.22](image-url)
Figure 2.22 Number of actively producing mines per district. Exploited mineral deposits are indicated with black points.

The last few decades have been volatile ones for the South African mining industry. In the early 1990s, the industry stepped into the global business community after years of isolation imposed by apartheid sanctions. By the end of the decade, however, world prices for gold and other metals declined sharply, causing a reduction in operations and workforces. A corporate restructuring of the industry followed...
(Makwinzha et al. 2001) along with a recognition that the survival of the industry would depend on changes in productivity and profitability (Granville 2001).

Despite the generation of considerable wealth by the industry, the majority of South Africans still live in poverty (COSATU/NUM 2001). Consequently, with international, national, regional, and local pressures, there has been a shift in the focus of the industry to improve the relationships between major and minor stakeholders, to encourage development, education and training, address safety needs and the issue of HIV/AIDS (Elias and Taylor 2001), and to improve environmental management. One objective of South Africa’s Reconstruction and Development Programme (RDP) is to use mining as a vehicle to expand entrepreneurial development, black empowerment, and to stimulate employment and growth (Makwinzha et al. 2001).

Demand

The South African mineral industry is largely export-orientated, with a small domestic market for mineral commodities (Granville 2001, Makwinzha et al. 2001, Chamber of Mines 2002). It is therefore directly impacted upon by world trends and events such as apartheid sanctions in the 1980s, the Asian financial crisis in 1997, and the September 11 attacks in the USA in 2001 (Granville 2001), as well as swings in global markets. The contribution of mining as a proportion of GDP in South Africa peaked in 1980 due to high gold prices, but there has been a steep decline ever since. This is due to the contraction of the gold mining industry, weak commodity prices, increasing labour costs, decreased government revenue, and increased capital costs (African Development Bank 1993, Granville 2001, Makwinzha et al. 2001, Hoadley et al. 2002). The impacts have been felt widely, as evidenced by the economic decay of former mining towns and the loss of jobs by thousands of mineworkers.

However, the reduced dependency on gold in South Africa’s total mineral sales, the long-term growth of coal, PGMs, and chrome and the prospects for further growth of non-gold minerals may halt a further decline in the role of mineral industries in the economy (Granville 2001, Hoadley et al. 2002). If income and employment generated in the basin through mining activities are an indication, then the mineral commodities most in demand are diamonds, gold, or coal, indicated by the municipalities with the highest levels of gross geographic product (GGP) from mining (Figure 2.23a) and employment in the mining industry (Figure 2.23b). Although only 3.6 percent of the Gariep basin’s population is employed in the mining industry, many millions of people (including migrant labourers from Lesotho, Mozambique, and Swaziland, employees of secondary industries and their dependants) rely heavily on the mining industry for their livelihoods (Granville 2001, Makwinzha et al. 2001).

In terms of small-scale mining, current bias and opportunities appear to be in gold, diamonds, coal, industrial minerals, and minerals derived from pegmatite and construction materials (DME 2002,
Mutemeri and Peterson 2002). In Lesotho, small-scale mining employs about 300 people, mainly in the quarrying of industrial minerals like clay, dolerite, sandstone, and river sand (Lebesa 2003). Despite the small scale of these operations, they can be surprisingly persistent, cause considerable surface disturbance, and are frequently not required to rehabilitate their operations to the same extent as corporate mining institutions. This is a classic example of landscape deterioration “by a thousand cuts,” and the inability of authorities to regulate micro-industries adequately.

Access

New legislation governing access to mineral and mining rights has been passed since the restrictive policies of the apartheid government were lifted in South Africa in 1994 (see Box 2.15). This is intended to shift the domination of the industry from the large mining houses to a mix of operations that includes a larger number of smaller-scale mines. South Africa's small-scale mining sector has been historically inhibited by these large mines, due to uneven access to minerals, a poor support system, the large development capital required to comply with national environmental, health, and safety standards, the lack of an appropriate institutional and legislative framework, and poor knowledge of project planning (Granville 2001). During the last ten years, more direct access to the region’s mineral resources for the people living in the region has been promoted by nationalisation of mineral resources, the move towards 'people-centred' mining, sustainable and rural development programs, and increased beneficiation of minerals (Hoadley et al. 2002). These all present opportunities to increase employment, to promote a more equitable pattern of access to minerals, as well as to increase the indirect contributions of the mineral sector to the economy (Granville 2001). However, the environmental effects of these small-scale activities need careful regulation. Small-scale quartzite mining in the Bronberg region of Gauteng Province, along with urban development, is believed to have severe impacts on the sand-dwelling Juliana’s golden mole (*Neamblysomus julianae*) (Maree et al. 2003).

Box 2.15 Legislation Promoting Change in the South African Mining Industry

- **Mineral and Petroleum Resources Development Bill (2002)**
 - Replaces the Diamonds Act (1986) and Minerals Act (1991) providing “for the recognition of the state as the custodian of the nation’s mineral resources and for the development of the mineral wealth to its full potential” (Makwinzha et al. 2001). The main objectives are to redress past imbalances by promoting historically disadvantaged groups in the mining industry, focusing on vesting all mineral rights with the state, promoting the small-scale mining sector through new explorations, site development and creation of a stable economic environment. Keys to the transformation of the mineral industry are the social upliftment of communities impacted by mining operations, attracting investment and securing tenure, while making “changes with minimal disruption to mining industry and trust in SA industry” (Granville 2001).
 - Facilitates the Mine Health and Safety Act and the National Environmental Management Act.
- **Mine Health and Safety Act (1996)**
 - Provides the basis to protect the health and safety of persons involved in mining, to identify and eliminate hazards. Provides monitoring, enforcement, investigations, and inquiries to improve health and safety on mines, as well as promoting training, co-operation, and consultation on these issues in the mining industry between the state, employers, employees, and their representatives (see http://www.acts.co.za/MHS/, Makwinzha et al. 2001, Chamber of Mines annual report 2002).
- **National Environmental Management Act (1998)**
 - The South African Constitution (Section 24) specifies that “everyone has the right to an environment that is not harmful to their health or well-being” and for legislation and measures to guarantee that environment (South African constitution, Chapter 2: Bill of Rights, Section 24: Environment http://www.concourt.gov.za/constitution/const02.html#24).
 - Requires approved Environmental Management Programme Report (EMPR), (Granville 2001, Chamber of Mines annual report 2002) encouraging community participation in environmental management, a risk-averse approach, the "polluter-pays" principle, and integrated environmental management (Granville 2001).
New government policies, the National Small-Scale Mining Development Framework, and recent domestic and foreign mineral investments all aim to develop and expand new mining activities and to couple these ventures with appropriate and integrated rural development programs. Their objective is to continue promoting the beneficiation derived from mineral deposits, especially those more suitable for small- or medium-scale mining operations (Granville 2001, Makwinzha et al. 2001, Hoadley et al. 2002, Mutemeri and Peterson 2002). The National Steering Committee of Service Providers to Small Scale Mining Industry (NSC) has identified deposits suitable for sustainable and integrated rural development initiatives. Additional unexploited mineral resources are scattered across the basin (Figure 2.24), while the potential also exists to discover new sites (Drechsler 2001, Makwinzha et al. 2001). The Free State, Northern Cape, and North West Provinces have the highest concentrations of active small-scale miners in the basin (Drechsler 2001). Within the Northern Cape, where the highest number of unexploited deposits lie, Richtersveld communities recently claimed a rich diamond-bearing area from the government as part of the national land restitution process.

Drivers of Change in Mineral Services

While in the past, both the benefits of mining and its impacts were largely the result of global forces and the practices of major mining corporations, much of the change in the sector is now being driven at the national scale. The new government policies designed to steer the growth of the industry, to promote private enterprise within a free-market system, and to increase attraction of foreign investment may precipitate much of the future development of the basin’s mineral services (Granville 2001, Makwinzha et al. 2001). Policies aim to improve labour relations and rights, ownership issues, capital gains tax, black economic empowerment, environmental management, equity, and the growth and advancement of mineral beneficiation (DME 2002, Hoadley et al. 2002). At the same time, South Africa’s entry into a global market is driving its move towards production technologies that require more educated, skilled labour in order to maintain its competitive position in the industry, continue to attract investment, and curb the effects of falling commodity prices, higher labour costs, and local ore depletion (Granville 2001).

There is now increasing emphasis around the world on alleviating dependence on minerals and making extraction of minerals more sustainable. In response to this emphasis, mining companies themselves have initiated efforts to research ways to make their operations more sustainable, with the Minerals and Sustainable Development Project being one example (Sampat 2003). The African Initiative on Mining, Environment, and Society (AIMES) of the Third World Network is a forum to unite civil society organizations that advocate mining issues in Africa.
Response Options for Managing Mineral Services

MINIMIZING IMPACTS OF MINERAL SERVICES ON ECOSYSTEMS

Interventions that reduce impacts of mineral extraction on ecosystems are certainly possible. Reclamation and rehabilitation of old mine dumps as well as minimizing mining waste and pollution in current operations are important responses directed at managing the resource itself. Such responses may be costly and frequently need to be formalised in policies before they are adhered to. The adoption of sustainable and sensible extraction techniques is particularly important in the small- and medium-scale mining context where environmental integrity and poverty alleviation are closely interlinked (see Box 2.16).

Box 2.16 Mining and Human Well-Being

The impacts of mineral extraction on health can be severe for communities near mining operations as well as ecosystems that they depend on. Asbestos pollution in particular has had devastating consequences for impoverished people in the Kuruman and Prieska areas, where entire school grounds are built on asbestos dumps, exposing those on the premises to air- and water-borne asbestos pollution. Rivers located near dumps act as conduits for secondary asbestos pollution, as fibres tend to clump along the banks and in dried-out riverbeds (Felix 1991).

Mineral services have the potential to reduce poverty and develop the economy through community-based projects aimed at building capacity and management skills in mining. These projects should focus on more effectively producing derived mineral commodities in a sustainable and diversified manner (Labonne 2002). However, development in the form of small-scale and particularly artisanal mining can, like large-scale mining, be economically, environmentally, and socially destructive unless properly organized (Granville 2001, Labonne 2002). For small-scale mining to successfully alleviate poverty and empower local communities, education about the importance of maintaining health, safety, and environmental standards and monitoring frameworks will be critical. So far, artisanal mining has usually not maintained these standards (Granville 2001). Large mining corporations could help with capacity building of inexperienced operators.

Even though the impact of mining can be alleviated by the responsible development of environmental guidelines, legislation, management, and development policies, the mining sector will inevitably continue to impact the environment by generating pollution and waste and consuming large amounts of water and energy. The export dependency of the sector also means that potential benefits of mineral services to human well-being are vulnerable to changes in global demand and laws affecting labour, safety, and environmental practices (Granville 2001).

One positive link between mineral services and human well-being concerns the mining industry’s involvement in addressing the HIV/AIDS epidemic, which includes the enforcement of transparency about the disease and reducing discrimination in the workplace, and in some cases, the provision of anti-retroviral drugs to employees. Every mining company in South Africa is expected to have a sound policy and programme to deal with HIV/AIDS in place by 2004.

TECHNOLOGICAL INTERVENTIONS

Technological advances in the mineral industry have worked to reduce costs, extend the range of recoverable ores, improve productivity and safety, and decrease waste and pollution associated with mining activities and operations. While this has led to a decrease in demand for unskilled labour in previously labour-intensive mining operations, such technological innovation and development holds opportunities to continue extending the viability of mining for certain commodities, to slow the decline of others, and to continue improving health, safety, and productivity on mines (Granville 2001). As a result of such technological advancement and innovation, the few more highly-trained mine workers are able to live with their families near the mines more permanently and are slowly replacing the many migrant labourers of the past (Granville 2001). In the small-scale mining sector, improvements in production and extraction techniques are still necessary to lessen impacts on ecosystems.

Improvements in the application of information technology to mining - as well as information sharing - are increasingly important as more stakeholders enter the industry. The South African Council of
Geosciences, a parastatal organisation formed in 1993, produces maps and information regarding mineral deposits, prospects, and showings, including an electronic metallogenic map database.

The development of technologies for the beneficiation of minerals within South Africa is being addressed in a bill aimed at the growth and advancement of mineral beneficiation (Makwinzha et al. 2001). This is in response to the unnecessary export of raw mineral resources when possibly more foreign exchange could be earned by beneficiation, particularly pertinent if it can be utilised in the small-scale mining sector.

LEGAL, INSTITUTIONAL, AND ECONOMIC POLICIES

In response to the historical monopoly of the mineral industry by a few large companies and past racial discrimination, the move to state ownership of mineral resources in South Africa in 2002 is set to transform the mining industry. The Mineral and Petroleum Resources Development (MPRD) Bill places particular emphasis on the participation of previously disadvantaged persons in the mineral industry and the benefits they can receive (Chamber of Mines 2002). State ownership of resources will enable investment in new explorations, site development, and promotion of the small-scale mining sector, while protecting and promoting mining investment and assuring tenure of existing rights-holders. It also emphasises job creation and social development, provision of more funds to professional and special services such as rehabilitation of derelict mine dumps and implementation of environmental management programs, and social upliftment of communities affected by mining (Makwinzha et al. 2001, DME 2002, Chamber of Mines 2002).

The MPRD also calls for a broad-based socioeconomic empowerment charter “encouraging black economic empowerment and transformation at the tiers of ownership, management, skills development, employment equity, procurement and rural development”. In order to facilitate the development of the small-scale mining sector, the Department of Minerals and Energy (DME) established the National Steering Committee of Service Providers to the Small-Scale Mining Sector (NSC). It aims to provide service delivery to the small-scale mining sector, and translate artisanal mining operations into operations that are more sustainable environmentally and economically (Makwinzha et al. 2001).

The MPRD Bill, by adopting the principles of the National Environmental Management Act (1998), must conform to national environmental policy and standards, which requires approval of environmental management programmes for prospecting organizations and mines (Chamber of Mines 2002). This government policy on environmental management takes a risk-averse approach and adopts the “polluter-pays” principle (Chamber of Mines 2002). The MPRD Bill requires that specific measures be taken to remedy impacts during and after the life of a mine (Chamber of Mines 2002). Mine health and safety legislation is relatively satisfactory but the implementation of this legislation still needs to be strengthened (Chamber of Mines 2002). The capacity of the Department of Minerals and Energy to utilise these legal instruments effectively is now being put to the test.

SOCIAL, BEHAVIOURAL, AND COGNITIVE RESPONSES

As minerals are a non-renewable service, their abundance will eventually decrease while the cost of extraction will increase. This problem is not unique to the Gariep basin, but because of South Africa’s leadership in world mineral production, its effects may be more pronounced than in regions of the world with less dependence on mining. In truth, “dependence” on mining is fuelled to a great degree by the value that societies around the world place on mineral products and metals, and the ability of the mining industry to wield political power to keep these values high. Thus, a change in values could have significant consequences for this sector, but in the short term, it is not likely that the lustre of mineral products will diminish.

Greater societal awareness and environmental education have precipitated closer attendance by the public to mining activities and have prompted them to demand accountability. The mining industry has responded to some of these societal concerns, pledging to be more conscious of the environment and to act on its responsibilities to communities surrounding operations by lending support to small-scale mining and providing or subsidizing facilities such as schools and hospitals (Chamber of Mines 2002). Despite this trend and the fact that international interests and national policies encourage such involvement, it is not yet systematic (Chamber of Mines 2002).
2.7 Air Quality

Air quality and to ecosystems are linked in several key ways. Ecosystems provide a range of air quality and climate services; among them are sinks for pollution, atmospheric cleansing, atmospheric chemistry, and nutrient redistribution, all vital to human well-being and to many ecosystem components and processes. However, land-use activities that transform ecosystems, usually to obtain their services, alter air quality as well as climate. Land cover and land use are the direct drivers of air quality. Both natural (for example, rainfall patterns and soil fertility) and anthropogenic drivers (such as socioeconomic activities) determine largely the type of land uses occurring in specific areas. The variety of land cover types in the Gariep basin – ranging from shrubland, grassland, bushland, and cultivated areas to large residential and commercial areas (urban and rural) – and land uses, which include the combustion of biofuels, fertilizer use, and mining, quarrying, and manufacturing industries - affect air quality to varying degrees.

The main air pollutants include greenhouse gases such as (in order of magnitude) carbon dioxide (CO₂), carbon monoxide (CO), nitric oxides (NOₓ), sulphur dioxide (SO₂), Volatile Organic Carbon (VOC) emissions, methane (CH₄), and nitrous oxide (N₂O). Carbon dioxide is the most important gas emitted in this area based on total amounts emitted on a yearly basis. While the African continent's contribution to global CO₂ emissions is only about 3.5 percent, South Africa is the single largest contributor to total CO₂ emissions in Africa (more than 40 percent), ranking it as the 15th largest emitter of greenhouse gases in the world (UNEP 2000). Most of these emissions in South Africa occur in the Gariep basin area.

Transport is a principal activity that contributes to air pollution in the basin, facilitated by the excellent road network throughout most of the Gariep basin. The transport sector (including airplanes, ships, trains as well as road vehicles) contributes more than 40 percent of South Africa’s total nitric oxide and volatile organic carbon emissions. Road vehicles contribute the most to the total carbon dioxide, nitric oxide, and volatile organic carbon emissions from the transport sector (94 percent, 53 percent, and 89 percent respectively). Road vehicles also contribute to lead emissions, especially in urban areas. Veld fires, coal-fired power stations, manufacturing industries, mining, agriculture, as well as the burning of fuelwood and fossil fuels such as domestic coal, liquid petroleum gas, dung, and paraffin for household energy purposes cause air pollution (DEAT 1999).

Agricultural activities are the main contributors of methane and nitrous oxide emissions in the Gariep basin. Activities include farming with domestic livestock and using nitrogen fertilisers for crop agriculture. The methane emissions from manure handling of animals in feedlots are larger than from manure deposited on a rangeland, due to the anaerobic conditions typically associated with the former. Livestock raising technology is changing towards the greater use of feedlots for animal fattening.

The less industrialised parts of the Gariep basin have some of the lowest emissions in the country (as indicated by CO₂ and SO₂ emissions; see Figures 2.25a and b), while the highest emissions generally occur in urban, industrialised areas. Stable layers of air are frequent, persistent, and spatially continuous over southern Africa during the winter and summer seasons. Fine weather conditions over most of the Gariep basin area occur during most of the year and aerosols, trace gases, and other atmospheric material are trapped between the layers in the stable troposphere. Material trapped near the top of the inversion layer can be transported away from the source area over distances varying from 300 to 500 km per night. Emissions that occur in the Gariep basin are transported across local and national boundaries, and conversely, the Gariep basin is influenced by emissions that occur outside of its boundaries. Sulphur dioxide emissions remain relatively stable in the more industrialised parts of the Gariep basin, mainly because of the management of coal quality, greater efficiencies achieved in the combustion process, and a small degree of sulphur dioxide removal from the stack emissions.

An indicator of the health implications of air pollutants is the number of times when the guideline value has been exceeded over a given time period (long-term or short-term). Although average concentrations of the criteria pollutants such as sulphur dioxide, nitric oxide, tropospheric ozone, and respirable particulate matter fall within the South African as well as World Health Organization (WHO) guidelines, which tend to be more strict (see Box 2.17), these are exceeded for certain periods of time at a household level, potentially affecting vulnerable individuals. Sulphur dioxide concentrations measured in some households exceeded international health guidelines by more than 10 times over a 24-hour period.
(DEAT 1999). Concentrations of sulphur dioxide that are unacceptably high for humans are also likely to be damaging to plants, especially sensitive ones. Sulphur dioxide and nitric oxide are deposited in both dry and wet forms as acids, which, by corroding and changing soil and water acidity, may have negative long-term effects for ecosystem health. Sulphur dioxide has on occasion exceeded limits for short periods in Gauteng Province, but no conclusive evidence exists that these spurts have caused chronic damage to vegetation. Acidification of surface water also makes it less suitable for drinking, irrigation, and industrial uses (DEAT 1999).

Volatile organic carbon is not toxic itself, but combines with nitric oxide and carbon monoxide, in the presence of sunlight, to form “photochemical smog,” which contains ozone and other gases toxic to plants and animals. This is particularly a problem in urban areas in the Gariep basin, mainly Gauteng. In rural areas, however, indoor air quality presents a problem in poorly ventilated housing where coal, dung or wood is burned in open hearths without chimneys (DEAT 1999). Data gathered for many sites in urban areas in the Gariep basin, especially those near industrial zones, show that the concentration of smoke particles in the air is often higher than the annual guideline (Van Zyl and Kruger 1998).

Particulate matter is also emitted in large amounts, especially in informal settlement areas where households are mainly dependent on the burning of fuelwood, dung, paraffin, and domestic coal for energy purposes. Emissions of respirable particulate matter together with emissions of carbon monoxide pose a serious health threat to people inhabiting poorly ventilated dwellings, especially the elderly, infants, and individuals with compromised immune systems, such as those suffering from HIV/AIDS. Since the energy sector is a major driver of air quality problems, a range of responses lie within the domains of energy policy and technology, discussed in Chapter 2.5. Of note is the introduction of a draft National Environmental Management: Air Quality Bill in 2003 to replace the Atmospheric Pollution Prevention Act of 1965, which was not able to involve provincial and local government effectively, lacked compliance and enforcement mechanisms, and did not foster transparent decision-making. The draft bill is far more comprehensive, enabling the establishment of national standards and proposing a regulatory framework for an air quality management planning and reporting regime and instruments to curb air pollution (DEAT 2003).
Box 2.17 How do South Africa’s Air Quality Guidelines Measure up to the WHO’s?

The following table provides a comparison of the WHO and South African guidelines, based on the Department of Environmental Affairs and Tourism (DEAT) recommendations, for some common air pollutants. While the averaging times for these guidelines vary, in most cases, South Africa’s threshold guidelines are higher than the WHO’s. The guidelines for pollutants not listed here must fall within threshold limit values recommended by the American Conference of Industrial and Governmental hygienists. A new bill introduced in South Africa in 2003 intends to catalyse the establishment of new guidelines.

It should be borne in mind that this table reflects averages only, and although average concentrations in the Gariep basin do normally fall within the South African as well as WHO guidelines, at household levels they are often exceeded in some areas.

Table A WHO and South African guideline values for ambient air quality.

<table>
<thead>
<tr>
<th>Substance (Gaseous)</th>
<th>Averaging Time</th>
<th>Ambient Air Quality Standards, in parts per billion (ppb)</th>
<th>Guidelines</th>
<th>WHO</th>
<th>South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen Dioxide</td>
<td>1 Hour</td>
<td>106</td>
<td>WHO</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Annual</td>
<td>21</td>
<td>South Africa</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>1 Hour</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>8 hour</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphur Dioxide</td>
<td>24 hour</td>
<td>48</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Sulphur Dioxide</td>
<td>Annual</td>
<td>19</td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Substance (in suspended particulate matter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>Annual</td>
<td>50</td>
<td>WHO</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Lead (pb)</td>
<td>1 Month</td>
<td>-</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Lead (pb)</td>
<td>Annual</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.8 Cultural Services

Many ecosystems in the Gariep basin have cultural significance, forming part of an individual, society’s, or nation’s identity. South Africa’s Natural Heritage Act, as well as the World Heritage Convention, under which natural and cultural heritage sites have been established and afforded protection, recognise this formally. The uKhahlamba-Drakensberg Park, a World Heritage Site on the border between South Africa and Lesotho (see Box 2.23), with its vast collection of San rock paintings, and the Cradle of Humankind site at Sterkfontein, near Johannesburg, are among the most well-known archaeological areas in the region.

While such heritage sites might be the most familiar icons of the cultural values of ecosystems and have garnered wide educational and tourism interest, numerous other, lesser-known cultural services exist, many of which do not occupy a physical place but are rather practices or traditions that are embedded in social customs. The cultures of many local people are interwoven with the ecosystems in which they live. Sacred pools and forests, taboos, rituals, belief systems, religion, and language centre around ecosystems and their services. People know that deteriorating ecosystems make them vulnerable, hence the current shift towards community-based natural resource management in many parts of the basin. Whether this shift will reap adequate benefits for ecosystems and people is yet unclear.

Local communities, and especially their older members, have considerable traditional ecological knowledge (Berkes and Folke 2002). This knowledge relates to ecosystem management (for example, maintaining sacred pools and forests), but also includes knowledge about medicinal plants and their properties. In the Fish River area, Xhosa tradition and identity is strongly founded on interactions with ancestors and the spiritual world (see Box 2.18). In turn, there are strong links between the spiritual world and certain environmental features. Key among these are sacred pools, intact forests, medicinal plants, clan totems (usually specific animals), and ancestors’ graves.

Land use pressures have posed threats to these sites in recent years, undermining cultural identity and spiritual harmony. Coupled with increasing urban contact, modernisation, and influences of other cultures, these pressures have made inroads into cultural beliefs and norms associated with use and abuse of landscapes. Much of the older generation perceives a decline in cultural identity and respect on behalf of the youth. In many instances, they use this to explain deterioration in the landscape, as the ancestors are believed to be disappointed or angry. A further threat to traditional knowledge stems from the loss of traditional intellectual property rights – particularly in the case of medicinal plants with
pharmaceutical value – to more powerful forces who are able to patent this knowledge as their own (Downes 1996). However, with cooperation between communities, pharmaceutical companies, and research organizations, traditional ecological knowledge could contribute to rural poverty alleviation through profit-sharing agreements. Despite these threats, traditional knowledge, and associated cultural services and identities, have demonstrated a strong persistence (Hall and Fenelon 2004).

Importance of Scale in Assessing Cultural Services

Research on the values that some communities associate with ecosystems suggests that spatial relationships exist between the location of a community and the amount of value they perceive cultural services to have (Brown et al. 2002). This is related to the place-based theory (Norton and Hannon 1997) which maintains that human cultures place highest value on things that are closest to them in time and space. This appears to be true for many communities, not only rural ones who maintain traditional customs.

Though it appears cultural services exist and have value in many places where people exist, the place-based theory would imply that an assessment of cultural services at a broad scale might underestimate the locally perceived values of such services. However, a broader-scale analysis enables a comparison of cultural services across local sites and the identification of general trends. Because cultural services may be distributed across large landscapes, it is imperative that these landscapes be managed for a variety of values, occurring at different intensities, over different scales of space and time (Brown et al. 2002). This requires an integrated social and biophysical science approach, as well as the recognition that communities themselves are heterogeneous. Both within and between communities, cultural values may interact in positive or negative ways.

For most rural people, cultural services are part of their daily reality, their livelihoods and identity. Some rural people define themselves by their connections to nature because their livelihoods depend upon it, and do not embrace nature only for particular rituals or ceremonies. Misunderstandings of the role of cultural services in rural livelihoods – including the romanticism sometimes perpetuated by distant western cultures – are a major challenge to appropriate recognition and management of cultural services.
Box 2.18 The Cultural Importance of Ecosystem Services to the amaXhosa People of the Eastern Cape

In the Great Fish River area, local Xhosa people place great cultural and utilitarian value on key resource patches such as mountains, forests in various stages of succession, and a variety of grazing lands. In many cases, the diversity of resource patches is the consequence of people interacting with the land, where, through a variety of induced disturbances these resource patches are created. The different types of resource patches provide a range of resources that satisfy villagers’ basic needs. These include both practical, physical needs as well as cultural and spiritual needs.

Rituals and traditions are central to the culture and identity of Xhosa people. Key resource areas are fundamental to the performance of these rituals and include sacred pools, dense forests, and mountains. Each of these sites has particular rituals associated with it, with specific benefits. The most important of these sites are sacred pools. In the research area, these are typically places of still deep water, with water flowing above and below. They often have steep banks and are surrounded by particular species of trees and plants such as Salix capensis, which is regarded as the tree of the “river people”, Cyperus textiles, and a variety of small plants and creepers such as Tecomaria capensis. The presence of these indicates the presence of the ancestors and the ‘river people’, mermaid-like creatures associated with the generation of water, rain, healing, and fertility of the land. These sites provide a place of direct communication with the spirit world where they can access blessing and health and provide thanks and veneration through the performance of particular traditions. They are therefore critical points in the landscape where culture in the form of traditions and connection with the ancestors is maintained.

Sacred pools also have a practical benefit, in that many people indicated that they never dry up. They consequently become very important water sources during times of severe drought. This relates to the many taboos associated with sacred pools where, for instance, the harvesting of medicinal and other useful plants surrounding a sacred pool is not allowed unless one is a diviner or igqirha. The vegetation surrounding sacred pools is therefore denser and provides a protective canopy, thus reducing the effect of evaporation.

The varieties of resource patches in the area are not only of cultural significance. They also supply over nine different types of building materials, more than forty medicinal plants, over ten species of fuelwood, a variety of cultural species, resources with an economic value such as prickly pear and aloe, game meat, honey, clean water, and forage of different densities, which obtain value at different times in the year and under different drought conditions. The table below summarises the results of a participatory ranking exercise for these resource types.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mountain water</td>
</tr>
<tr>
<td>2</td>
<td>Cultural species</td>
</tr>
<tr>
<td>3</td>
<td>Fuelwood</td>
</tr>
<tr>
<td>4</td>
<td>Livestock</td>
</tr>
<tr>
<td>5</td>
<td>Medicinal plants</td>
</tr>
<tr>
<td>6</td>
<td>Building materials</td>
</tr>
<tr>
<td>7</td>
<td>River water</td>
</tr>
<tr>
<td>8</td>
<td>Agricultural crops</td>
</tr>
<tr>
<td>9</td>
<td>imiFino (wild vegetables)</td>
</tr>
<tr>
<td>10</td>
<td>Honey</td>
</tr>
<tr>
<td>11</td>
<td>Wild fruits</td>
</tr>
</tbody>
</table>

Although the resource patches of dense vegetation and diversity have high environmental value, the villagers regard them as having limited utilitarian value. It is rather the disturbed forest patches and grazing lands that are of importance. However, the attachment of spiritual or cultural values to certain sites in the landscape places restrictions on harvesting resources – such as the taboos associated with sacred pools – and ensure that nodes of dense vegetation remain in the landscape. This could reflect the co-evolution of Xhosa people with their local environment, as these dense pockets of vegetation become important during times of crises, such as drought and fire.
2.9 Ecosystem Integrity

Box 2.19 Biodiversity of the Gariep in Summary

The Gariep contains all seven of South Africa’s biomes, but is predominantly made up of the Savanna, Grasslands, and Nama Karoo biomes. These biomes are significantly different from one another in terms of their biodiversity composition, processes that threaten them, and conservation efforts. The table below contains a summary of the three major biomes and demonstrates the high numbers of species, including endemic and endangered species, recorded in the basin. The Grasslands biome is the most specious and threatened biome with most of the region’s endemic and endangered species. The Savanna biome, the smallest of the three in the Gariep, is a species-rich biome with a fair number of endemic and endangered species. The Nama Karoo is a semi-arid biome with lower species richness but it contains substantial numbers of the region’s endemic and endangered species.

Despite the fact that these biodiversity assets support the livelihoods of many South Africans and contribute to the economy, they are one of the most threatened in the world. South Africa contains the highest concentration of threatened plant taxa in the world (Cowling and Hilton-Taylor 1994) while 91 percent of the country falls within the UNCCD (1994) definition of “affected drylands”. Land cover change is unevenly distributed in the basin with the Grasslands containing 28.77 percent transformed land, followed by the Savanna with 6.7 percent, and the Nama Karoo with only 1.48 percent. Invasions by alien species are another significant threat to the biodiversity of the Gariep basin. An estimated 8 percent of South Africa has been invaded by 161 alien plant species affecting all biomes in the region. Bush encroachment of indigenous plants affects over 33 percent of the basin, particularly the Grasslands.

*Species data for birds, butterflies, mammals, reptiles, and scarabs from SAISIS
**Endemic to South Africa
***Endangered if listed in the Red Data Books for Birds and Mammals. Other taxa according to expert opinion
ª Based on data from DWAF
† Based on National Land Cover Database (Thompson 1996)

<table>
<thead>
<tr>
<th>Biome</th>
<th>Area (km²)</th>
<th>*Species richness</th>
<th>**Endemic spp.</th>
<th>***Endangered spp.</th>
<th>#Protected area</th>
<th>†Transformed area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasslands</td>
<td>215508.20</td>
<td>1377</td>
<td>144</td>
<td>112</td>
<td>2.7%</td>
<td>28.77%</td>
</tr>
<tr>
<td>Savanna</td>
<td>190645.90</td>
<td>1424</td>
<td>106</td>
<td>102</td>
<td>10.58%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Nama Karoo</td>
<td>237147.45</td>
<td>979</td>
<td>99</td>
<td>73</td>
<td>1.28%</td>
<td>1.48%</td>
</tr>
</tbody>
</table>

Assessing Condition and Trends of Ecosystem Integrity

Ecosystem integrity refers to the ability of ecosystems to continue delivering the ecosystem services upon which human well-being depends (Box 2.20). This is a complex issue to assess, and one for which no single proven method exists. Most assessments of ecosystem integrity to date have therefore focused on the condition and trends of one or more elements of a region’s biodiversity as a proxy for ecosystem integrity. Biodiversity is an overarching term referring broadly to the variety of life on earth, and comprises a range of elements and concepts. Similar to freshwater, biodiversity is a crosscutting concept associated with different types of services. These include provisioning (in that biodiversity underpins the
existence of a variety of species that have utilitarian value to people, such as for food or fuel), regulating (it helps to control climate or sequester carbon), supporting (it plays a role in soil formation and nutrient cycling), and cultural (it is attached to recreation opportunities, nature-based tourism, and sacred and aesthetic features).

SAfMA acknowledges biodiversity as a service, but also places biodiversity at a basic level depicted by the MA conceptual framework as the “life on earth” which underpins all ecosystem services. Although biodiversity may be directly linked to some services like fuelwood and medicine, its role is also far more fundamental in that it supports these services as well as most others. Biodiversity is linked to ecosystem services by the role it plays in governing ecosystem properties and processes (Ehrlich and Mooney 1983, Daily 1997, Naeem 2001, Loreau et al. 2002). Ultimately, all types of services are derived from ecosystem processes; the condition and trends of ecosystem services are inextricably linked to the condition and trends of ecosystems and their functions.

Biodiversity is a complex notion and therefore difficult to measure and assess in its entirety. Assessment includes measuring where biodiversity is, as well as identifying areas of endemism, rarity, and threat and how these all change over space and time. We can never directly observe or count all biodiversity in an area; thus, much use has been made of the hierarchical nature of biodiversity (Figure 2.26) and the fact that levels of the hierarchy might act as surrogates or substitute measures for other levels and therefore the entire hierarchy. It is assumed that to measure and assess the condition and trends of, for example, specific groups of species will indicate the condition and trends of all biodiversity in the region. This assumption, however, remains largely unsupported and untested.

The hierarchy of biodiversity is organised from genes to ecosystems with several levels in between. The most common levels of measurement are the species and ecosystem levels, which are relatively easy to measure and at which data already exist in many regions of the world. The genetic level is the basic supporting level of the entire hierarchy; however, data on genetic composition are difficult and expensive to collect and are therefore not often employed in the measurement and assessment of biodiversity. The ability to measure biodiversity at levels between individual organisms and populations is also critical, as these are the levels that interact with the biophysical environment, and with each other, to produce the ecosystem services that humans both rely on and impact. Like the genetic level, these levels are difficult, costly, and time-consuming to measure, and are therefore largely data-poor.

Figure 2.26 The nested hierarchy of biodiversity (Noss 1990).

Box 2.20 Key definitions

Ecosystem Integrity: Ability of an ecosystem to provide services; more specifically, the maintenance of the structure and function of an ecosystem that enable service provision.

Biodiversity: (biological diversity) Overarching term referring broadly to the variety of life on earth, and comprises a range of components and concepts. While biodiversity is necessary for the delivery of all ecosystem services, it is not treated as a service itself within the MA.
Generally, species belonging to indicator taxa (groups that are well known and well surveyed) as well as endemic and threatened species (which are often most sensitive to ecosystem change) are commonly used measures to assess the condition of biodiversity in a region. More recently, collation of data on environmental variables and classifications of remotely-sensed imagery have resulted in several broad-scale measures such as vegetation types, ecosystems, and land classes. In principle, these can be used as surrogates of lower levels of biodiversity. Naturally, the appropriateness of any measure also depends on the scale at which the assessment takes place. Local-scale studies tend to use species inventories, while national and regional scales employ broad-scale measures like land classes due to biases and gaps in species data at this level.

There are mixed degrees of support for the assumptions of surrogacy. It is generally assumed that in measuring the composition and structure of biodiversity that the more data and levels of hierarchy assessed the more accurate and realistic the representation of biodiversity will be. However, the reality is that data are often only available for these surrogates. Therefore, we used surrogates in our assessment of biodiversity and ecosystem integrity, with a caveat that the results are limited because they are only representative of these elements and not of the entire regional biodiversity. In addition, as Figure 2.26 indicates, biodiversity also has a functional component (e.g. genetic mutations, population migrations, seed dispersal) that is thought to be related to the maintenance of the compositional and structural elements of biodiversity (e.g. species, land classes) as well as the ecosystem services under consideration. SAfMA is particularly interested in these functional aspects of biodiversity. There is, however, currently very little data on functional types or groups for an assessment at a basin scale. Biodiversity elements assessed in the Gariep are discussed below as well as the methods used to assess the elements, condition, and trends in ecosystem integrity.

Species

In this assessment of condition and trends of biodiversity in the Gariep basin, we relied heavily on species data, mostly for vertebrates. Species distribution databases at a broad scale are notoriously problematic due to sampling biases, unclear taxonomy, and a lack of data for the majority of the regions’ species. We included distribution data for birds from the South African Bird Atlas Project (Harrison 1992), mammals from the Conservation Management and Assessment Program (Friedmann and Daily 2004), and butterflies, and scarabs from the Transvaal Museum, Northern Flagship Institute (Koch et al. 2000). At the time of this assessment, a frog atlas was being put together but was not available. The vertebrates are well-known and relatively well-sampled groups, while invertebrate data are very sparsely collected and reflect substantial sampling bias. Figure 2.27 illustrates the bias in collection effort for scarab beetles in South Africa. The collection points are concentrated along the road network, reflecting sampling effort rather than the actual distribution of scarab beetles in South Africa.
Plant species collected from across the whole of South Africa are kept in a significant database by the National Botanical Institute. However, previous attempts to use the data concluded that the nature of the database renders it almost impossible to use in an assessment because it focuses on many rare and unusual plants rather than on a representative sample. Some attempts have been made to refine the data for some regions of the country (Freitag et al. 1997, Reyers et al. 2000) and to use species of special concern. However, only now is there a national attempt to rationalise this database in the National Biodiversity Spatial Assessment. We thus relied mostly on bird and mammal data in this assessment.

These species of birds, mammals, and insects were used as indicator taxa; indicator taxa are well known and sampled groups of species whose distribution patterns and condition can be used to indicate patterns and conditions in other less well-sampled groups (Reyers et al. 2000). Data on endemism and threat were taken from various sources including Barnes (2000), Friedmann and Daily (2004), and expert opinion for the invertebrates.

These species distribution data were collected at a variety of scales ranging from point records with geographic coordinates (Figure 2.27) to grid cells of various sizes. The data were collated at the quarter-degree square (QDS) scale, which corresponds with the largest grid cell used for data collection. There are 1110 QDS in the Gariep basin, each with an area of approximately 625 square kilometres. We assessed the numbers of species, including endemic and threatened species, in each grid square in order to explore the spatial distribution of species diversity and threat in the region. Table 2.5 illustrates the species data used in the study.

Table 2.5 Description of the species data used in the study, including number of species, as well as the numbers of endemic and listed Red Data species per taxon. These latter categories show some overlap and thus species can fall into both categories.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Number of species</th>
<th>Endemics</th>
<th>RDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>634</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Butterflies</td>
<td>440</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>Mammals</td>
<td>188</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>Scarabs</td>
<td>258</td>
<td>65</td>
<td>37</td>
</tr>
<tr>
<td>Total</td>
<td>1520</td>
<td>178</td>
<td>126</td>
</tr>
</tbody>
</table>

Figure 2.28 illustrates the species richness per QDS for all taxa assessed. The east-west gradient in species richness is reflected in most taxa, which potentially reflects the moisture gradient in the region. The birds are a well-sampled taxa in this assessment and as such, their distribution patterns are a reliable indication of bird species richness within the Gariep. The butterflies are not well sampled in the region, but do show a concentration in the east. The mammals show a similar pattern. However, many of the mammals are constrained to or are only sampled in national parks. As such, their richness is often a reflection of the boundaries of protected areas such as the Kalahari Gemsbok National Park, a part of the Kgalagadi Transfrontier Conservation Area in the northwest of the basin. The scarab richness reflects the location of roads as is obvious from the linear nature of the grid cells with species records. Despite these shortcomings in the species data, we do form an idea that the eastern parts of the Gariep are richer in terms of species than the western parts.

Species richness, although an important measure of biodiversity in the region, provides very little information in terms of ecosystem integrity. The only way to use the data would be if a time series of species data per QDS existed (i.e. richness per QDS resampled every 10 years). This would provide trend data in species richness, which is helpful to infer integrity of various ecosystems. For example,
species declines could be translated into decreases in integrity while increases in exotic or invasive species could be used to indicate decreases in integrity as well. Unfortunately, time series data for species are not available for this region for any of the taxa sampled, and thus species information has limited use in determining the ecosystem integrity of the region.

Figure 2.28 Numbers of species of each taxon per QDS in the Gariep basin. Insert on the next page shows the study region with protected areas in green, highlighting the Kalahari Gemsbok National Park, a part of the Kgalagadi Transfrontier Conservation Area.

Figure 2.29 Numbers of endemic species of each taxon per QDS in the Gariep basin.
Figure 2.29 shows the numbers of endemic species per QDS for each taxon assessed. These figures reflect those in Figure 2.28, and because they have the same sampling problems, fall short as a measure of ecosystem integrity. Their only value is perhaps to illustrate regions of serious conservation concern, as they contain species not found outside of South Africa, and thus are important national priorities. The expected east-west gradient in richness is again obvious in the bird species. However, endemic species can often emphasise areas of importance not highlighted by richness patterns. Endemic species are useful to highlight biodiversity priorities, as these are often rare and unusual species occupying rare and unusual places (Reyers et al. 2000, Driver et al. 2003).

The final assessment of species distribution is illustrated in Figure 2.30 and shows the numbers of threatened species per QDS. These maps provide a first assessment of the ecological integrity of the region. The concentration of threatened species is often used to measure the condition of the biodiversity or ecosystem. The threatened species also appear to be concentrated in the east of the basin, particularly in the case of the birds. The invertebrate taxa have very few records for threatened species and as such are perhaps less useful for assessing ecological integrity. It is apparent that the patterns shown here are a reflection of those in the maps of species richness. One could therefore argue that the areas with many threatened species are just more species-rich than others and as such are not areas of declining ecological integrity. This highlights that caution should be exercised in interpreting such information. In fact, some of the areas with many species and many threatened species are within protected areas such as the Kalahari Gemsbok National Park and therefore should have an above average ecological integrity.

Figure 2.30 Number of threatened species of each taxon per QDS. Threatened species were compiled from Red Data Lists for the vertebrate taxa and were based on expert opinion for the invertebrates.
Conservation Value

The final component of the ecosystem integrity assessment using species data evaluated the conservation value of areas within the basin. Conservation value is a term that refers to the importance of a particular area in terms of its biodiversity. We use the notion of irreplaceability when assessing the biodiversity value of areas within the basin as a measure of conservation options lost if the site were to be converted or further degraded. High irreplaceability values indicate importance to the conservation targets of a region (Pressey 1999, Cowling et al. 2003a). Conservation targets can include numbers of localities of each species, the number of individuals or populations, or area of a habitat type. (Targets are discussed in more detail below in the section on ecosystems and in Box 2.21). Thus if the conservation target of the Gariep basin represented all species in at least one locality, then an area with the only known record of a particular species is totally irreplaceable. If this area were to be degraded, it would not be possible to meet the target. We applied the notion of irreplaceability to the Gariep basin using species distribution data for mammals and birds. With the use of the software packages C-Plan (Pressey 1999) and ArcView 3.2 (ESRI 1998) irreplaceability surfaces of the basin were developed to identify areas of high biodiversity value, which could then be compared to data layers depicting threats and conservation status.

![Irreplaceability scores of QDS](image)

Figure 2.31 Irreplaceability values per quarter-degree grid square (QDS) range from 0 (low = many alternative options for the conservation of the specie found within the QDS) to 1 (high = no options for conservation of the biodiversity found in the QDS). This figure illustrates the irreplaceability values of the QDS in the basin based on the conservation target of one locality for each bird and mammal species.

Box 2.21 Conservation Targets for Species

The setting of conservation targets is a controversial topic. There has been much debate on the targets for conservation planning units like ecosystems and habitats, but very little discussion has taken place on setting conservation targets for species. These targets are usually population level targets of minimum viable numbers of individuals for a population of a particular species. Kerley et al. (2003) discuss the setting of targets for mammals based on abundance information.

However, most conservation planning with species data relies on presence/absence data per planning unit or grid cell, which give no indication of abundances or occurrence per unit. Therefore, targets in these cases are really the number of localities, units, or grid cells for each species, which actually amounts to a certain amount of land per species. This is not really a useful target as the planning units such as QDS are often not viable implementation units. For this reason, most studies of this nature - including the National Biodiversity Spatial Assessment as well as this assessment - leave the target as a simple one grid cell per species. Once data on the actual distribution of species (e.g. point records), minimum population sizes, and habitat requirements of species are available, we can start to set meaningful targets for each species.
Figures 2.31 illustrates sites with high irreplaceability values in the Gariep. These sites contain species found nowhere else in the basin and are thus essential if only one representative of each species is required as a conservation target. Because several endemic and rare bird and mammal species occur in the basin the grid cells they inhabit are likely to be irreplaceable. The Highveld grasslands of the provinces of Mpumalanga and Gauteng are the most irreplaceable along with some regions in the Nama Karoo. Some of the irreplaceable QDS coincide with conservation areas such as Kgalagadi Transfrontier Conservation Area. The concentration of sites of conservation importance in the Grasslands is of concern due to the location of threats and absence of protected areas in the biome. The targets set for the analysis are low; if the goal was to represent more of the species’ localities, the picture would change with more sites becoming irreplaceable.

Assessments such as these allow for effective land-use planning and analysis of trade-offs. Although this evaluation says very little about the integrity of ecosystems in the region and is thus of limited value in this assessment of integrity, it does highlight the ecosystems of critical importance to biodiversity in the Gariep. It is recognised that these irreplaceability values would change if protected areas were included in the assessment. The present assessment excludes protected areas from the calculations of irreplaceability and just examines the biodiversity value of the basin. However, species in protected areas can be excluded from the assessment as they are considered already represented and their targets are achieved. As the calculation of irreplaceability is an iterative process, as more protected areas are included and the species in them excluded from the analysis, the patterns of irreplaceability would change. Thus, the establishment of new protected areas would also change the current picture of conservation value.

This assessment of ecological integrity based on lists of species, endemic species, and threatened species is flawed due to sampling biases, taxonomic biases, and a lack of good threat data for species such as Red Data Lists. In addition, as pointed out above, these species assessments provide very little information on the integrity or health of ecosystems within the region. These data also represent only one timeframe and thus are not useful for inferring any trends. The species distribution data would have to be resampled for the basin to detect changes in species richness, endemics, and threat hotspots. Because this is unlikely in the near future we only have a measure of condition and not trends.

The assessment of ecological integrity in the Gariep attempted to evaluate other levels of the biodiversity hierarchy besides the species level, such as the lower levels of genes, individual organisms, and populations. However, as mentioned previously, there is very little information on these levels and their condition and trends for the whole Gariep basin. The higher levels of organisation, including the ecosystem level, formed a major component of our assessment of ecological integrity, because of information availability at these levels.

Ecosystems

It is generally agreed that an ecosystem, according to the definition of the Convention on Biological Diversity that has been adopted by the Millennium Ecosystem Assessment, is: a dynamic complex of plant, animal and micro-organism communities and their nonliving environment interacting as a functional unit" (see Box 2.20) (United Nations 1992: Article 2). However, very few ecosystem classifications or maps correspond with this definition at the scale of the Gariep basin. Broad-scale vegetation types (Low and Rebelo 1996) and broader-scale biomes have been defined, but do not necessarily correspond with the notion of an ecosystem as a functional unit. The newly developed VEGMAP (Mucina and Rutherford 2004) will in all likelihood address some of these concerns and is in fact being used as an ecosystem data layer in South Africa’s National Spatial Biodiversity Assessment (a broad-scale assessment of regions of conservation concern in South Africa); however, it was not available at the time of this assessment.

The lack of a fine-scale classification of ecosystems is not unique to the Gariep and has been noted as a problem in the MA at both sub-global and global scales. The vegetation types of Low and Rebelo (1996) could potentially correspond with broad scale ecosystems and their condition thus could be an indicator of ecosystem integrity in the region. These units are defined as having “…similar vegetation structure, sharing important plant species, and having similar ecological processes”. These units would have
potentially been intact today, were it not for major anthropogenic land transformations such as agriculture and urbanisation. Monitoring and understanding land cover change, as a reflection of underlying land use change, are critical to the assessment of the condition and trends in biodiversity.

Land cover change is the greatest threat to biodiversity in the region, and therefore we assessed such changes in land cover within these ecosystems and their spatial implications for the region. Land cover data provide an indication of areas in their natural state, converted areas, and degraded regions (see Box 2.22 for a summary of land cover in the Gariep) which are of use to identify the threatened status of the ecosystem. Remotely-sensed (satellite) data have made one of the most significant contributions to identifying and monitoring land cover change. Data acquired by Landsat and SPOT HRV are the primary sources for assessing land cover change at relatively high resolutions. This technology for measuring land cover is useful as an indication of the condition of ecosystems but requires subsequent resurveys to be able to reflect land cover change.

South Africa is currently being resurveyed and a new land cover map of the area will be available shortly based on remotely sensed images from the year 2000. This will then allow the identification of areas where rapid land cover change is experienced. At present, it is only possible to compare the situation as it appeared in 1996 when the last land cover survey was conducted (Thompson 1996) with what was potentially there before it was altered by industrialisation. The potential pre-industrial land cover can be inferred from a map of the extent of potential vegetation types (Low and Rebelo 1996).

Box 2.22 Land Cover in the Gariep

Based on an assessment of the 1996 Landcover data for South Africa (Thompson 1996, Figure 2.9.7b), about 84 percent of the Gariep basin remains in its natural state while 12 percent is transformed by other land uses. Of this, most has been changed through cultivation (93 percent), followed by urbanisation (four percent) and degradation through overgrazing and fuel wood removal associated with subsistence level livelihoods (four percent). This has resulted in over five percent of soils in the country being affected by water erosion and average soil loss of 2.5 tons per hectare, which is more than eight times the rate of soil formation.

These land cover threats are concentrated mostly in the Grasslands biome. This is the hub of economic activity in and in the Gariep as well as South Africa. The majority of people in South Africa live in this region, not only because of its agricultural potential, but also due to historical settlement related to its large coal deposits and the world’s richest gold fields. Many areas suitable to afforestation by *Pinus* and *Eucalyptus* species occur within the Grasslands. The biome contains Gauteng Province, the major urban complex of South Africa. Some 150 000 head of cattle and 1.5 million sheep graze in the area (McAllister 1998). Grasslands also provide many traditional medicines, the value of which is estimated to exceed R 50 million annually.

The rest of the basin remains largely untransformed with only a small section of the Savanna degraded through overgrazing and fuelwood collection. However, while a large proportion of land in the Gariep is in a natural state, much of this land is fragmented and used for grazing. It is not possible to distinguish between all natural and disturbed grasslands with current satellite imagery. A more advanced satellite product is needed that reflects land uses and degradation, and which can verify the results of the interview-based study of land degradation by Hoffman et al. (1999) discussed in Section 2.4.

Reyers et al. (2001) assessed of the status of vegetation units (Figure 2.32). The areas with the highest concentrations of threatened vegetation types are in the eastern half of the region, falling largely within the Grasslands biome. Levels of transformation were compared against the transformation thresholds predicted by a geometric model developed by Franklin and Forman (1987). This work suggested that the most critical time for land planning and conservation is when between 10 and 40 percent of the landscape has been transformed or impacted upon. Regions showing greater than 40 percent loss of natural habitat (indicated in the two darker shades in Figure 2.32c) have already undergone significant ecological disruptions. Thus vegetation types falling between the 10 and 40 percent levels of transformation by urbanisation, cultivation, and plantations (the second lightest shade) and those with more than 40 percent transformation, recognised as critically threatened with low levels of ecosystem integrity, were highlighted as needing conservation attention. This work suggests that large tracts of the eastern region of the Gariep basin have low levels of ecosystem integrity, which has implications for the continued functioning of these eastern ecosystems and their provision of ecosystem services. These
results are of concern, because, as highlighted in Box 2.21, this eastern grassland region is important for the provision of many ecosystem services.

Because these vegetation units are very broad and do not include functional components in the definition of their boundaries, it was decided in this assessment of ecosystem integrity in the Gariep basin to include some finer scale, functional ecosystem types in our assessment of ecosystem integrity. These data are not readily available in South Africa. There is the possibility of defining new units based on edaphic and climatic factors; however, the role of the SAfMA was not to create new data, but rather to assess existing data.

The Agricultural Research Council (ARC) has defined what are called “landtypes” for most of South Africa (Figure 2.33; excluding portions of the old “homelands” and Lesotho). Pedosystems are areas with uniform terrain and soil patterns (MacVicar et al. 1974, Land Type Survey Staff 1986). They are similar to land systems (Christian and Steward 1968, Lawrence et al. 1993), which have been extensively used as ecosystem units for conservation area evaluation at broad regional scales in Australia (Purdie et al. 1986, Pressey and Nicholls 1989, Pressey and Tully 1994). Climate zones (mapped at 1:250 000 scale) have been superimposed upon pedosystem maps to arrive at maps of landtypes covering the majority of South Africa (MacVicar et al. 1974, Land Type Survey Staff 1986). A landtype therefore delineates an area at 1:250 000 scale that displays a marked degree of uniformity with respect to terrain form, soil pattern, and climate. Landtype data were prepared by the Institute for Soil, Climate and Water (ISCW) of the ARC.

The delineation of these landtypes approximates the scale of ecosystems in the Gariep assessment and includes some functional components in their definition due to the inclusion of climate, terrain, and soil in their delineation. There are 2138 different landtypes recognised in the Gariep basin. In a similar assessment to the one done by Reyers et al. (2001) on the vegetation types of South Africa, we assessed the land cover situation in each of the landtypes. However, we deviated from their technique and used one based on current work in South Africa and elsewhere that assesses the conservation
status of the ecosystem (Cowling et al. 2003a). This method assesses the proportion of land in the ecosystem subject to some form of land cover change, which is then compared to the proportion of land required to represent a designated conservation target.

Figure 2.33 Landtypes of the Gariep basin as defined by the Institute for Soil, Climate and Water, Agricultural Research Council.

One of the most familiar conservation targets is the 10 percent set by the IUCN. However, this target has been highly criticised as being too low to guarantee the persistence of regional biodiversity (Soule and Sanjayan 1998). In addition, several conservation planners have argued that each ecosystem deserves a separate conservation target, depending on its sensitivity, rarity, vulnerability, and value. Several techniques have been developed recently to determine the conservation target for an ecosystem. These have included species area curve calculations (Pressey et al. 2003) as well as simple weighting formulae, which calculate a target based on the rarity and threat status of the ecosystem. In a similar fashion to Pressey and Taffs (2001) and Reyers (2004), we set conservation targets for each land type as:

\[
\text{TARGET} = 10 \times (1 + \text{NR} + \text{VU})
\]

where TARGET is the percentage of the original extent of each ecosystem, NR is the natural rarity of each ecosystem measured as \((A_m - A_i)/A_m\) where \(A_m\) is the area of the largest ecosystem in the region and \(A_i\) is the area of the ecosystem for which the target is to be set. NR ranges from 0 to 1. VU is a measure of threat facing the ecosystem, calculated as the suitability of that ecosystem to alternate land uses (i.e. dryland cultivation in the Gariep). The Institute for Soil, Climate and Water of the ARC determined the suitability values for each landtype. Although only based on suitability to one type of land use, this provides an adequate reflection of the vulnerability of that land type as there is large congruence between areas suitable to cultivation and afforestation (Wessels et al. 2003, Reyers 2004), which are the main land uses in the region. Suitability values for the landtypes range from 1 (very suitable) to 9 (unsuitable). These values were reclassified into three VU values of 1 (not suitable), 2 (moderately suitable), and 3 (very suitable) in a similar fashion to Pressey and Taffs (2001). TARGET could thus range from 20 to 50 percent, but in fact, values ranged from 21 to 33 percent of the original extent of the landtype.

We assess conservation status by calculating the proportion of the ecosystem remaining in a natural condition and then classify this value in one of four categories, which correspond with categories used in Red Data assessments. These categories include:

- **Not threatened** (NT) = more than 80 percent of the ecosystem remains in a natural state
- **Vulnerable** (VU) = between 60 and 80 percent of the ecosystem remains in a natural state
- **Endangered** (EN) = ecosystems with less than 60 percent natural area remaining and more than the area required by the conservation target
- **Critically Endangered (CR)** = ecosystems with less than the natural area required to meet the conservation target

These thresholds correspond closely with those used by Franklin and Forman (1987) and which are applied in Figure 2.31. It classifies ecosystems that are between 20 and 40 percent transformed and require some attention as vulnerable. Those that are more than 40 percent transformed are already experiencing some loss of ecological integrity with the accompanying loss of function and ecosystem service provision and are classified as endangered, signifying that they have lost so much land in natural condition that they can no longer meet the conservation targets set for them. Critically endangered ecosystems have a very low ecological integrity and are likely to be of serious concern to human well-being.

Figure 2.34 shows a breakdown of the landtypes as ecosystems and their conservation status. The figure shows that most of the ecosystems are not threatened; these ecosystems fall mostly within the western and central regions of the basin. Some nine percent of the ecosystems fall into the vulnerable category. These ecosystems have lost between 20 and 40 percent of their original extent to other land uses and require consideration in land use and conservation plans. Like those in the endangered and critically endangered categories, vulnerable ecosystems fall largely in the north-east of the basin.

Those ecosystems that are endangered and critically endangered have lost more than 40 percent of their original extent and are experiencing loss of ecological function and ecosystem services. These results are in agreement with those shown in Figure 2.32 of the broader vegetation types and thus re-emphasise the importance of these eastern regions in planning frameworks and conservation decision-making. As highlighted in the previous sections, this region in the east is an important source of most of the water and food produced in the basin.

A second component of this assessment involves an examination of their protected area coverage. One of the most popular responses to declining ecosystem conditions is the establishment of protected areas for the in situ conservation of biodiversity. A measure of the protected area coverage in each land type would be a useful measure of the integrity of the ecosystem, assuming that protected areas actually improve and protect the integrity of ecosystems within their boundaries. In South Africa, this is a reasonable assumption where protected area establishment and management have had a good record. An assessment of protected area coverage therefore provides another measure of ecosystem integrity.

Based on data from Department of Water Affairs and Forestry (Figure 2.28 inset) we assessed the overlap of protected areas (provincial and national parks) with the various land types and in a gap analysis, compared the extent of protection with the conservation targets set for the conservation status assessment. Figure 2.35 illustrates a gap analysis, or a measure of how close the protected area coverage is to the conservation target. Regions in the north-west are very well protected, with more than...
350 percent of the targets achieved for some landtypes in the region. The rest of the Gariep is poorly protected, with only 0 to 10 percent of the targets attained for the majority of the basin's ecosystems.

The formally protected areas are distributed unevenly between the three biomes of the Gariep. The Savanna biome is well-protected (10.6 percent) because the large national parks fall mainly with this area (10.6 percent). This coverage is due mostly to its biodiversity content and nature-based tourism potential. The Nama Karoo receives very little protection (1.3 percent) due to its lack of charismatic fauna and hence lower tourism appeal. The Grasslands contain mostly provincial parks and a World Heritage Site in the Drakensberg. These protected areas make up a very small percentage of the biome with only 2.7 percent of the Grasslands protected. These results reinforce the plight of the eastern ecosystems of the basin: they are rich in species, highly transformed, important for the provision of ecosystem services, and poorly protected.

Although the protected areas database used in this study is the most up-to-date available at the time of the assessment, shortcomings of the data include incorrect boundaries, missing protected areas, and differing levels of legislation and tenure for some of the protected areas. This realisation has led to the refinement of these maps by the National Biodiversity Spatial Assessment, but these data were not available at the time of this assessment. In addition, this database does not include Ramsar and Natural Heritage Sites (see Box 2.23). The management and tenure of these areas is not perhaps on the same level as that in formal protected areas, but they do play a role in conserving ecosystems. Furthermore, these protected areas may no longer play a role in conservation as species begin to adjust their ranges and movements in response to climate change, as discussed in the next section.

![Figure 2.35](image.png)

Figure 2.35 Gap analysis of the landtypes of the Gariep. The darker areas have protected area extents that meet or exceed the conservation target for the landtype. The areas of concern are the lighter landtypes where the protected areas cover very little of the landtype, not meeting the conservation targets of the ecosystems.
Drivers of Change in Biodiversity

The MA conceptual framework distinguishes between direct drivers of change in ecosystems, such as land use and land cover change, species introductions or removals, technology adaptation and use, external inputs (fertiliser use), harvest and resource consumption, climate change, and natural physical and biological drivers such as volcanoes. Indirect drivers, including economic, demographic, socio-political, scientific and technological, and cultural and religious change, in turn influence these direct drivers. South Africa has witnessed changes in many of these indirect drivers due to the democratic transformation in the country since 1994 (Wynberg 2002).

The shift to democratic rule has had significant implications for how the environment is viewed and managed. Ten years ago, conservation was a preservationist agenda serving the privileged elite, restricting community access and often resettling rural populations. The government policies of the time supported biodiversity conservation and resulted in threatened species programs, protected areas, management, and research development. However, these policies also ignored sustainable use, established protected areas on marginal land, and supported a non-integrated land use strategy with seventeen government departments sharing the responsibility for nature conservation.

The UNCED meeting in Rio de Janeiro in 1992, the democratisation of South Africa in 1994 and subsequent ratification of the Convention on Biological Diversity in 1995 had large implications for South African biodiversity. Seven policy processes were initiated in the environmental field and the nationally consultative process of the White Paper on Biodiversity as well as the subsequent National Environmental Management, Biodiversity and Protected Areas Acts began after 1994. With this change in government came the introduction of a bioregional approach to conservation, as hailed by organizations such as Cape Action for People and the Environment (C.A.P.E.), TFCA's, community-based natural resource management, conservation on private land, bioprospecting and biotechnology advances. Government funding cuts, and subsequent needs to privatise protected areas within the last ten years have been offset by increased donor interest, with GEF, UNDP, and UNEP donating R128 million between 1994 and 1999. These funds were intended to be catalytic or to provide for the incremental costs of particular initiatives that had succeeded, however. At the same time, research capacity has been decreasing, with taxonomist numbers in decline and a drop in research grants at universities, research facilities, and museums (Herbert 2001).
The current land cover situation in the Gariep is discussed in Box 2.22. The impacts of land cover change on biodiversity and ecosystem integrity are serious and often irreversible. These changes affect ecosystems by altering their composition, processes, and resilience to disturbance, but they also have important consequences for ecosystem services upon which humans depend (Kunin and Lawton 1996, McCann 2000). Land use planning in South Africa has historically been poor, driven by political processes rather than biophysical characteristics, with inefficiencies, inequities, and environmental degradation resulting. The almost total transfer of land in most regions of South Africa from government to private ownership is possibly unique in the annals of European colonisation. The state by the mid-1930s had lost control over natural resources, which in countries such as Australia and the United States were retained by the authorities because of their unsuitability for agriculture (Christopher 1982). In effect the absence of state interest in land through a leasehold system has led to a strong demand for land and an attempt to make a living in areas highly unsuitable for farming.

Biggs and Scholes (2002) provide a detailed assessment of land cover change in South Africa between 1911 and 1993. Their study focused on cultivation and afforestation as agents of land cover change. Another form of land use which has not been studied in much detail in the Gariep is urbanisation. Not much of the region is urbanised and very little is known of the historic trends in urbanisation. However, the portion that is transformed is in the already threatened northeastern highveld region. The impacts of urbanisation on ecosystem integrity are also serious; as with cultivation and afforestation these land cover changes result in areas where the structure and species composition is completely or almost completely altered. Biggs and Scholes (2002) showed that during this time period the cultivated land in South Africa more than tripled, while area under timber plantations increased more than tenfold in the former white areas. Area under cultivation increased until the 1960s where it reached a plateau and began to show increased variability due to sporadic cultivation of marginal land. Population growth and rising affluence have been important factors contributing to increases in food production. This increased demand has been met initially through the expansion of land under cultivation and later through technological changes which increased yields per hectare. These technological changes include higher yield cultivars, pesticide, irrigation, and inorganic fertilizer use.

Most of the expansion in agricultural land happened before the 1960s and was concentrated in the wetter eastern and extreme southern parts of the country and thus the impacts on ecosystems (such as habitat loss) have been disproportionately borne by these regions (e.g. the Highveld grasslands and southern fynbos). The impacts of the extensification of land under production are well studied in South Africa and incorporated into conservation planning and ecosystem management plans in the regions. On the other hand, the impacts of agricultural intensification are not as well known. These effects include pesticide build-up, fertilizer runoff, siltation of water bodies, extraction of limited water resources for irrigation, and other impacts associated with land degradation. These impacts can have as or even more serious implications for regional ecosystem integrity and as such should be included in land use planning and ecosystem management.

The area under afforestation increased after World War 2, but still only covered 1.5 percent of the country by 1995. This increase was driven by the demand for mine support timber, construction timber and an international pulp market. Forestry occurs mainly along the grasslands escarpment in the east of the Gariep.

How land cover might change in the future is uncertain. It appears that the conversion of natural areas into cultivated land has stabilised. The expansion of afforested land is less certain, but is likely to be influenced by the development of drought-resistant species and the economic benefits and job creation potential of the forestry industry. However, afforestation is very water demanding and in a water-limited country like South Africa this is a problem. The spread of urban areas including informal settlements and resultant peri-urban sprawl is difficult to predict, while the expansion of rural population centres is even less certain.
These impacts of democracy and other processes on environmental issues, together with the associated changes in the indirect drivers in South Africa, have led to significant alterations in the main drivers of ecosystem integrity change. In South Africa, current drivers of change in ecosystem integrity include land use/cover change, species introductions, and climate change. Box 2.24 describes the broad land use changes that have taken place in South Africa and in the Gariep over the past century highlighting the historic expansion of land use into previously natural areas followed by a slowing of conversion rates and a focus rather on the intensification of land use practices. Thus, although land area conversion has slowed down, the impacts of external inputs have increased. Another form of land cover change is degradation, which includes areas that have a very low vegetation cover in comparison with the surrounding natural vegetation cover and are typically associated with rural population centres and subsistence level farming, where fuelwood removal, overgrazing, and subsequent soil erosion were excessive (Thompson 1996). Very little information is available on degradation of ecosystems in South Africa besides the Hoffman et al. (1999) product mentioned in Section 2.4. This is an important gap in data for use in ecosystem assessments. In addition to the conversion of land to alternate land uses, the combined effects of degradation and fragmentation - 46 percent of the grasslands biome occur in patches of less than two square kilometres (Neke and du Plessis 2004) - has had serious implications for ecosystem integrity. Eberhard (1990) has predicted that the combined effects of deforestation and subsistence agriculture will totally denude natural woodlands in communal areas by 2020.

The impacts of alien invasive species, as described in Box 2.25, highlight the impacts on ecosystems and the implications of this driver for ecosystem integrity and service delivery in the Gariep, especially in the north east of the region. The third major driver of change, climate change, may cause flagship protected areas in the region to lose many of their species (Erasmus et al. 2002, van Jaarsveld and Chown 2001) and may cause a reduction in biomes by 35-55 percent (WWF 2001). Coarse-scale climate change models predict that the climatic conditions that are currently associated with the Succulent Karoo biome will no longer exist by 2050, because of anthropogenic enhancement of CO₂ levels. If a strong relationship is assumed between plant and animal distributions and these broad-scale climatic correlates of biome distribution, it is reasonable to expect that there will be severe disruptions of the region’s biota over the coming decades (Rutherford et al. 1999, Foden 2002). In addition to the direct impacts of climate change on ecosystems, Duke and Mooney (1999) point out that most of the important elements of global change are likely to increase the prevalence of biological invaders.
Box 2.25 Invasive Alien Species in South Africa

Like many countries, South Africa faces a particular challenge in terms of invasive alien species. These are plants, animals, and microbes that have been introduced from other parts of the world, and have often displaced indigenous species. It is widely accepted that invasive alien species are the single biggest threat to South Africa’s biological diversity (Preston 2003). The impacts of alien invasive species on biodiversity are complex, with effects at all levels of the biodiversity hierarchy from the individual to ecosystem, and therefore have consequences for ecosystem services (Townsend 2003). Most work in South Africa on alien invasive species has focused on invasive alien plants (IAP). These plant species have very significant impacts on the ecological integrity of natural systems and consequently human livelihoods. IAPs use 2.4 percent of the basin’s water resources (Section 2.3), reduce farming productivity, intensify flooding and fires, cause erosion, transform rivers, silt up dams and estuaries, impact water quality, and can ultimately lead to the extinction of indigenous plants and animals.

Documented evidence of the impacts of alien invasive species on some ecosystem services exists. These impacts can be measured as qualitative or quantitative changes in ecosystem service delivery (Simon and Townsend 2003) or through economic valuations of the impacts of particular species on ecosystem service production (Zavaleta 2000, Turpie et al. 2003). Turpie et al. (2003), in a study of the effects of alien infestation in the Cape Floristic Region of South Africa, showed that current total losses of ecosystem services in the fynbos due to alien plant species are almost 700 million Rands per annum. These values are mainly realised in the informal sector and are not accounted for in national accounting systems.

In a recent study of South Africa’s most invasive alien plant species, scientists determined regions in South Africa which were suitable for these plant species and thus where these species could spread to. The north-eastern parts of the Gariep basin are highlighted as being suitable for invasion by many of these species and are in fact some of those most suitable areas for IAPs in the country.

Statistics

- Invasive alien plants have become established on over 10 million ha of land in South Africa.
- 750 tree species and 8000 herbaceous species have been introduced into South Africa.
- 1000 introduced species are naturalised, 200 are invasive.
- 84 species are from South and Central America, 14 from North America, 30 from Australia, 29 from Europe, 36 from Asia.
- 45 percent of species from Australia have become important pests.
- Invasive alien plants threaten 55 percent of the Red Data-listed plants in the country (Versveld et al. 1998).
- Invasive alien plants threaten insect diversity (McGeoch 2002).
- Up to 60 percent of endemic freshwater fish are threatened by introduced alien animal species.
- Over the next 20 years, the cost of controlling invasive alien plants in South Africa is estimated to be R600 million a year.
- Left uncontrolled, invasive alien plants are expected to double within 15 years.

Source: http://www.dwaf.gov.za/wfw
Responses

In 1995, the then-Minister of Water Affairs and Forestry, Professor Kader Asmal, initiated the Working for Water programme. This program has seen exceptional budget increases—from R25 million in 1995/6 to R442 million in 2003/4. It has provided training and employment opportunities for upwards of 20,000 people, mostly the poor and marginalised. Over one million hectares of land have been cleared of invasive alien plants during the past eight years (Preston 2003). However, invasive alien plants are still spreading and growing at a faster rate than the programme is clearing them.

There is a particularly strong bond between Working for Water and the protected areas of South Africa, where invasive alien species present one of the greatest threats to their role in conservation. The program has come under criticism for not being sufficiently flexible in prioritizing emerging weeds (controlling them before they get out of hand), its lack of a clear mandate and authority, its use of “incentives” rather than “disincentives”, its failure to optimise the necessary public and private partnerships, and weaknesses in its planning, systems, structures and general management (Preston 2003). The recent development of the Biodiversity Bill, and in particular the thematic area of the National Biodiversity Strategy and Action Plan (NBSAP) which focuses on alien invasive species, has promised a step forward for Working for Water and other efforts to contain the damage of invasive alien species. The establishment of the Secretariat of the Global Invasive Species Programme within South Africa has further given the cause a further boost.

Response Options for Maintaining Ecosystem Integrity

Responses for managing ecosystems and maintaining ecosystem integrity include protected area establishment and management, goals and approaches for sustainable use, management of invasive alien species, reintroductions, rehabilitation and recovery programs, metapopulation management, and the inclusion of biodiversity issues in agriculture and other forms of land-use planning (mainstreaming).

Despite the many challenges to the maintenance of ecosystem integrity, some positive trends in the environmental arena are apparent in the region. The responses noted above, many unfathomable in the recent past, are quickly gaining ground. They demand time and resources, however, and their benefits are often felt over a much longer time scale than their costs. The average politician or decision maker may be reluctant to implement these responses after evaluating the costs and benefits; however, through processes like this assessment and other sector-specific evaluations such as alien invasive impacts (Turpie et al. 2003), stakeholders are becoming increasingly aware of the risks of allowing ecosystem integrity to continue its downward spiral. As stakeholders gain an increased awareness of the importance of maintaining ecosystem integrity, these responses become possible, as stakeholders are in a position to exert an influence on the decision-making process.

Biodiversity awareness is on the increase in the region and thus many policies are being developed for the management of these drivers and their impacts, which may serve to strengthen legislative powers for biodiversity conservation. South Africa’s international convention commitments and an active National Department of Environment Affairs and Tourism have driven many of these policy processes. The White Paper on Biodiversity Conservation and Sustainable Use was the precursor to new legislation in the form of a National Environmental Management Act, which has subsequently passed two additional acts on Protected Areas and Biodiversity. These pieces of legislation propose several frameworks and action plans to streamline and prioritise the conservation of biodiversity. They are well thought out, contain many new ideas and approaches, and should hopefully aid the cause of conservation. These national processes include the National Biodiversity Strategy and Action Plan (NBSAP) and a parallel National Spatial Biodiversity Assessment, mentioned several times above. Both of these processes aim to be completed by the end of 2004 and should provide a National Biodiversity Framework from which to start assessing and managing the conservation and sustainable use of biodiversity in the country. The National Spatial Biodiversity Assessment will also hopefully focus the conservation efforts in the region on the areas identified as most urgently requiring conservation attention (Figure 2.36).
However, concern exists that the economic value of some land use practices will undermine some of the policies’ aims and objectives. In a country where about a quarter of the population lives below the poverty line, immediate economic benefits associated with certain land uses easily derail the opportunity to achieve long-term benefits of biodiversity conservation. However, new incentives, such as the rates reduction of land managed for conservation, are promising. These and other economic incentives are valuable techniques for promoting conservation particularly on private or communal land. Of course, care must be taken that these incentives are appropriately applied and monitored.

The last ten years have seen the addition of 155 000 hectares of protected land countrywide, with plans to increase this level of protection from the current six to eight percent within the next ten years. However, this will not improve the biodiversity situation unless done in a systematic way through the identification of areas most in need of conservation. The establishment of protected areas in South Africa has a history of inefficiency and inequity, and the realisation that this approach could lead to ineffective conservation coincided with a similar realisation globally in the 1980s and led to the development of systematic conservation procedures in the country (Lombard et al. 1997). These procedures focus on the use of spatial biodiversity data to efficiently identify areas requiring protection in order to conserve national or regional biodiversity (see Margules and Pressey 2000 for a review). The effectiveness of these techniques in some areas of the country has been exemplified in, for example, the Cape Floristic Region (Cowling et al. 2003a), Succulent Karoo (Driver et al. 2003), and Subtropical Thicket (Cowling et al. 2003b). In fact, the techniques have been so successfully applied that South Africa has become a world leader in the area of conservation planning (Balmford 2003). Still, obstacles and problems associated with the techniques exist, particularly in the phase between the identification of land for conservation and its effective conservation. It appears that implementing these “optimal” reserve systems remains a major obstacle that needs to be traversed. However, new approaches in the use of off-reserve conservation of the areas identified as important to biodiversity are helping to overcome this.

This form of conservation moves away from the use of formal protection of areas with removal of people from land. Not only is this type of approach important in a country where people still live off natural resources found in protected areas, it is also of value as more than 80 percent of the country is owned by private land owners and thus not readily available for formal protection. Many new schemes now exist to involve landowners in the conservation of biodiversity found on their land. In addition, many attempts are being made to involve communities living around protected areas in the management and benefits of the area. These Community Based Natural Resource Management (CBNRM) approaches and their value in conservation and community upliftment are still topics of hot debate. Communities living near protected areas are often very poor and have not yet found ways of converting the natural resources around which they live into economically beneficial products without undermining the ecological integrity of the area. Many studies justify the conservation of an area as being more economically beneficial than utilising the area for some other land use. However, this is mostly through paper profits rather than real benefits to the rural poor. Even so, it is becoming increasingly clear to conservationists and other development workers that communities will not conserve a resource if benefits accruing from it cannot be demonstrated in more tangible forms than has been the case in the past. As a result, the idea of conserving natural resources by using them more appropriately is gaining ground. Economic gains from such commercialisation programs will hopefully encourage communities to appreciate natural resources and promote their subsequent conservation.
In addition to new techniques for identifying and establishing conservation areas, the management practices of protected areas have also changed. The focus of conservation has shifted from the preservationist approach of protecting the status quo of charismatic vertebrates to the maintenance of natural processes and the biodiversity these processes support (Reyers et al. 2002, Rouget et al. 2003). Thus, the establishment and management of protected areas are more dynamic and efficient.

The regions shown in Figure 2.36 classified as national conservation priorities require fine-scale planning, assessment, and conservation management. The areas of overlap with the basin are in the north-eastern region of the basin and include areas 5, 6, 7, 10 with some overlap in the far west with area 15. This assessment has highlighted the north-eastern region repeatedly due to its wealth of biodiversity, large contribution to the provision of ecosystem services, suitability to other land uses, and threatened status. Priority area 15 is also identified in this study due to its overlap with the Ramsar Site and Important Bird Area of the Orange River Mouth Wetland.

Working against the favour of the Gariep are its lack of tourist appeal and the global hotspot status of other areas in South Africa. Many of the country’s conservation initiatives focus on areas outside of the Gariep basin, including bioregional plans such as Cape Action for People and the Environment (C.A.P.E.), the Succulent Karoo Ecosystem Plan (SKEP), the Subtropical Thicket Ecosystem Plan (STEP), and the KwaZulu-Natal Conservation Value Assessment. It is therefore not surprising that the Gariep has had few of these approaches applied, few new protected areas identified, and attracted little conservation NGO interest. On the other hand, it could be argued that Savanna regions of the basin are already well protected due to the presence of charismatic megafauna in this biome. Small portions of the basin, which coincide with the Succulent Karoo and Subtropical Thicket, are taken in account by the bioregional plans in these biomes. This leaves the Grasslands and Nama Karoo biomes as areas of concern. Some conservation work has already begun in these parts. These include the establishment of a grasslands forum through the Gauteng Department of Agriculture, Conservation, and Environment (DACE) in order to coordinate conservation efforts in the Grasslands, most of which fall in the Gariep basin. This National Grasslands Initiative has developed a scoping report and now waits for funding to appoint a coordinator to take the initiative forward. WWF-South Africa, DACE, and the National Botanical Institute are the organisations responsible for this process. Other initiatives include the establishment of a TFCA in the Drakensberg escarpment, Ramsar Wetlands, and World Heritage Sites, which address the protection of cultural services in addition to biodiversity conservation.

In the Nama Karoo, it could be argued that because land use pressures are reasonably low (even grazing pressure is declining relative to the 1960s and 1970s) and ecosystems are little transformed and mostly functional, this region is not high on the conservation agenda of the basin. Additionally, although large tracts of untransformed land in the biome mean that many opportunities exist to create massive areas to protect migratory ungulates, this may negatively influence livestock enterprises and the economic activity that these support. The lack of a priority area in the Nama Karoo based on the outputs of the National Spatial Biodiversity Assessment further strengthens the case against immediate conservation action in the region.

Outputs of the conservation plans in the Grasslands, Succulent Karoo, and Subtropical Thicket will identify areas requiring conservation. Effective conservation of this basin, known as the “heartland” of the country is gaining momentum. It will however require new and innovative approaches, as traditional formal protected areas are not an option in a region so suitable to alternative land uses that appear more lucrative. The conservation and management of land within the Gariep will have to be dynamic and adaptive due to the large numbers of people living on the land and utilising natural resources. Due to the importance of agriculture in the basin, one of the more appealing responses to maintaining ecological integrity would be to include biodiversity issues into agricultural practices. Some work has already been done on this in regions of the Gariep where areas important to biodiversity are highlighted and avoided in the extensification of land under agriculture. These are often areas marginally suitable to agriculture that are not sustainable (Wessels et al. 2003). An ideal approach would be to manage land for conservation as well as agriculture; however, the Gariep is not only extensively cultivated but is also intensively farmed, making the persistence of biodiversity in those landscapes less likely. It is therefore more suitable to suppose that conservation and cultivation will not necessarily be possible in the same area, but that the planning of what happens where on the landscape is important.

An innovative response is the transboundary conservation concept through the use of TFCAs. Several such areas are either existing or proposed in the Gariep basin and their potential benefits could be large. However, the role these areas play in conservation and development is still unclear and care must be
exercised in their future development as it could potentially exacerbate previous ad hoc land allocation practices. Another new direction in biodiversity conservation involves intellectual property rights, a controversial and rapidly changing issue that has an important impact on national economies. Amendments on patent laws on plants and bioprospecting of plant-based drugs from the less developed and plant-rich nations are intended to protect the interests of all parties. However, these amendments still favour the developed nations when it comes to property rights of botanical materials, and South Africa will be required to prepare well-drafted patent laws for these products (George and van Staden 2000). In addition, the owners of the original material and knowledge must also benefit from the plant products and engineered flora.

These frameworks, initiatives, and policies will only be of value if supported by sensible agricultural, land reform, and development policies in the region. The continued population growth within the area and increased levels of urbanisation and migration into the area as well as the increased demand for ecosystem services need addressing to protect these valuable and threatened biological resources upon which all people in the basin depend. It is hoped that an assessment such as this one will help to bring about changes in policies and attitudes to biodiversity and ecosystem integrity, with recognition of the role that ecosystems play in delivering services and supporting human well-being.

Providing information to stakeholders is one way to influence behavioural change. Other responses include establishing effective and accountable institutions to drive and manage change, and identifying and implementing incentives for individuals and organisations to embrace change. The Working for Water Programme (Box 2.25) is an example of a program that successfully changed the way people view and deal with alien invasive plants by highlighting the impacts these plants have on ecosystem integrity, ecosystem services, and ultimately, human well-being.

The value of education and communication cannot be overstated in promoting the maintenance of ecosystem integrity. The inclusion of environmental issues in school curricula and effective communication of the value of intact ecosystems to people are crucial steps for effecting positive behavioural change in future generations.
Box 2.26 Biodiversity and Communities

At the local level, protected areas provide useful benchmarks for biodiversity. In the Great Fish River area, communal areas have fewer plant and arthropod species, but more reptile and insect-eating bird species, than neighbouring protected areas, while the protected area has more frugivorous and arboreal birds than the communal areas (Fabricius et al. 2003). In addition, protected areas are much less fragmented than communal land.

For communities, biodiversity is important at the landscape and species levels, the latter being so because of the widespread use of goods from the local environment within daily livelihoods. At Sehlabathebe, a key facet is the increasing fragmentation of the mountain grasslands by human habitation and cultivation. Overgrazing by livestock is also perceived to be a significant problem, resulting in increased silt loads in streams, soil erosion, and invasive shrubs, accompanied by changes in grass sward composition and impacted sponge areas. The national park offers some protection for endemic species.

In the Fish River, overall ecosystem integrity has declined over the last decades, of which respondents are keenly aware. This is a result of several factors, the key one being a rapid increase in human populations, largely because of the enforced resettlements during the apartheid era. This reduced the area of land available for land-based activities of arable cropping, grazing, and collection of wild products. By 1990, approximately 40 percent of the land area was under residential settlements and roads. This subjected unsettled areas to heavy utilisation pressures. As such, much of the woody vegetation has been removed completely or markedly opened up. The area under gully erosion increased four fold. The resistant, unpalatable, dwarf shrub Pteronia incana has invaded grazing lands. In reasonably intact areas, local communities potentially use more than 120 plant species for multiple purposes. However, differing land uses favour different species. In comparison with the Fish River Reserve, 20 percent of useful plants found there are not evident in the communal areas, yet 11 percent of useful plants in the communal lands were absent from the reserve. Overall, there was a higher abundance of useful plants in the reserve. Similar findings were found with respect to reptiles and arthropods, namely communal lands had lowered species richness, but nonetheless supported some species not found in neighbouring land uses. Therefore, at a landscape level, a diversity of land uses and management objectives is necessary to promote species richness.

The Richtersveld National Park (RNP) is renowned for its plant species richness, especially of endemic succulent species. The diversity of plants in mountainous terrain is significantly higher than that on the plains. Generally, footslopes and mountains have on average at least twice as many plant species per 100 square metre plot than plains (Hendricks et al. 2003c). A significant driver behind the proclamation of the RNP were the threats to this endemic flora through perceived overgrazing as well as sale of succulents to collectors. With the establishment of the RNP under joint management control of the South African National Parks and the local community, the magnitude of both these perceived threats is likely to have decreased. There has been no investigation of the effects of unscrupulous collecting. The effect of grazing is most prominent around stockposts and watering points, with reduced vegetation cover and hardy pioneers replacing plant species sensitive to grazing. These effects decrease away from these point sources, up to a distance of approximately 800 metres. However, the total impact is relatively small with only one stockpost per 500 hectares. The large-scale earthworks associated with diamond mining in the RNP are perhaps more significant an impact on species distributions and richness. On the Namibian side, however, the declaration of restricted mining areas has been a major factor in conserving biodiversity and ecosystem integrity because of the limits such declarations place on settlement and land use.

2.10 Ecosystem Services in an Urbanising World: Gauteng Province

It is projected that by 2030, three-fifths of the world’s population will be urban (UNPFA 1999). The Gariep basin is already ahead of the global trend, with approximately 64 percent of its 14 million residents making their homes in urban areas. By comparison, 54 percent of South Africans were living in cities in 1999 (Stats SA 2003). Lesotho is a more rural nation, with an urban population making up 28 percent of the total in 2000 (World Health Organization 2002a).

Urban populations are highly dependent on ecosystem services. In effect, urbanites trade resource-based livelihoods for industrial and service-based ones, thus relying on networks to deliver the ecosystem services they need and that cannot be produced in urban areas. As cities grow, these urban-rural linkages are redefined, and can have tremendous effects on both the supply of and demand for
ecosystem services that extend far beyond city limits. In less developed nations, the effects of urbanisation are often more profound, as it quickly takes priority over alternative forms of land use in the proximity of cities, even where productive croplands occur (Lambin et al. 2001). In addition, the prospect of employment in cities induces permanent or circulatory migration, with people flowing out of rural areas and a proportion of their wages flowing back in as remittances to relatives who stay behind.

Gauteng Province, the southern half of which lies within the Gariep basin, exemplifies the urban transformation process. It is the smallest province in South Africa (17,010 square kilometres; 1.4 percent of the total land area of the country) and contains 8.8 million people (20 percent of the national population, the second highest proportion of all the provinces). Perhaps most telling, the population of Gauteng increased by 20 percent between 1996 and 2001, outstripping the national growth rate by a factor of two; meanwhile, population in some of the more rural provinces declined significantly during this period (Stats SA 2003).

Gauteng forms the integral economic hub of South Africa - and the greater southern African region - contributing 36.5 percent of the national GDP. It has an urbanisation rate of 94 percent and a population density of 375 people per square kilometre, an order of magnitude higher than the country’s average. Like most urban areas, Gauteng consumes greater amounts of ecosystem services than it produces, particularly food and water.

The effects of urbanisation on biodiversity can differ radically from that of other forms of land use such as cultivation. As Gauteng Province lies mostly within the Grasslands biome, it contains many endemic and severely threatened species, formally protected only in a modest reserve network. Nonetheless, the Gauteng Department of Agriculture, Conservation and Environment (DACE) maintains an extensive database on conservation features and threats in the province, which contributes to policy processes.

Gauteng’s Agricultural ‘Footprint’

Gauteng provides only 0.3 percent of South Africa’s total agricultural income and profit (Stats SA 2002) but is a major agricultural market. An analysis was conducted of the food volumes produced and consumed in Gauteng compared to South Africa as a whole (Figure 2.37). For most food types, annual production for Gauteng is well below four percent of the national production. The exceptions are pork and chicken, of which Gauteng comprises between 17 and 20 percent of the national consumption, probably due to the fact that neither space nor rangeland is a major requirement for farming these animals. Interestingly, Gauteng reportedly consumes 60 percent of South Africa’s dairy products. Much of this, however, is redistributed to other areas in the country as butter, cream, cheese, and yoghurt.

![Figure 2.37](image)

Figure 2.37 Ratio of Gauteng’s consumption to its production of six food types. Only chicken, with a ratio of 0.66, is produced in excess of consumption. Wheat has the largest “footprint” Gauteng consumes nearly 30 times the amount produced within the province. Sources: Agriwriters 2003, De Villiers 2003, IFAP 2003, South African Government Online 2002a, 2002b, South African Grain Information Services 2002, Stats SA 2001.
The Gauteng Water Cycle

Johannesburg, the urban nucleus of Gauteng, is one of the few major cities not built on a navigable watercourse, and was instead developed around the fledgling gold mines that were founded in the late 19th century (Figure 2.38). Gauteng is in fact a water-scarce province, with a mean annual precipitation of only 655 mm per year. The scarcity is intensified by the high levels of urbanisation, mining, and industry that require vast quantities of water, much of which is imported into the province from the Lesotho Water Highlands Project. These activities, however, also contribute substantial return flows of water, which results in keeping inputs of water roughly equal to the outputs. Table 2.6 indicates the inputs and outputs of water in Gauteng. On average, 58.3 percent of urban water use returns to the water supply. Mining returns 254.9 percent of the water used, due to the required pumping of groundwater to prevent the mines from flooding. There is a relatively small surplus of 213.94 million cubic metres of water in Gauteng; this does not include water stored in dams and groundwater resources that have effectively been allocated.

Figure 2.38 Location of urban development, mines, major rivers, and municipalities in Gauteng Province.
Much of the water that flows through Gauteng is high in salts and heavy metals due to mining and industry. While mining is a major contributor to the province’s GDP, it has significant impacts on ecosystems and health. These include acid mine drainage, with pH levels downstream of some mines reaching 2.2 to 2.5 over the period of a year (City of Johannesburg 2001, Holgate 2002). A pH below 4.0 presents a severe danger to human health (DWAF 1996a). Very acidic water also dissolves heavy metals from the surrounding rock and causes surface water contamination.

The Upper Klip River is one location in Gauteng where mine pollution is severe (Table 2.7). Heavy metal concentrations are in most cases well above twice the acute levels, indicating a significant negative impact on aquatic ecosystems (DWAF 1998, Oryx 2000). Another major indicator of mine pollution is the sulphate concentration in rivers. In the Upper Klip River, there are instances of the SO\textsubscript{4} levels reaching maximum levels of 22 445 mg/l, orders of magnitude higher than the maximum level of 600 mg/l considered acceptable (Holgate 2002, City of Johannesburg, 2001).

Many Gauteng residents live in low-cost housing and informal settlements, most of which do not have water-borne sewerage. As many of these settlements occur along the rivers, surface water resources are heavily impacted. To add to this, the rapid urbanisation and increased population density has resulted in the sewer system being under capacity, particularly in the inner city where the apartment blocks house as many as 20 people per apartment. This causes blockages and sewerage spillages into the stormwater system and ultimately into the rivers. The primary problem is the level of faecal pollution, indicated by faecal coli (a group of gut-dwelling Escherichia coli found in warm-blooded animals associated with disease in humans), which is often found in association with other diarrhoeal-causing bacteria such as cholera. The acceptable limit for faecal coli is 130 per 100 ml. At many monitoring points for water quality, the faecal coli levels reach the millions, with one point registering a massive 11 million faecal coli per 100 ml. This is not uncommon and poses a significant health threat to people who are exposed to such highly contaminated water (City of Johannesburg 2001, Holgate 2002).
Table 2.7 Average levels of heavy metal concentrations found in the Upper Klip River, 1995 to 1999. Source: City of Johannesburg 2001.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Average Concentration</th>
<th>Recommended Levels for Aquatic Ecosystems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Target</td>
<td>Chronic</td>
</tr>
<tr>
<td>Cadmium (µg/l)</td>
<td>10</td>
<td><0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Copper (µg/l)</td>
<td>20</td>
<td><0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Arsenic (µg/l)</td>
<td>70</td>
<td><10</td>
<td>20</td>
</tr>
<tr>
<td>Zinc (µg/l)</td>
<td>190</td>
<td><2</td>
<td>3.6</td>
</tr>
<tr>
<td>Manganese (µg/l)</td>
<td>18010</td>
<td>180</td>
<td>370</td>
</tr>
<tr>
<td>Iron (mg/l)</td>
<td>3.01</td>
<td>0.0-0.1</td>
<td>0.3-1.0</td>
</tr>
</tbody>
</table>

Wetland Services in Gauteng

The Klip River catchment with its widespread reedbeds of Phragmites australis clearly illustrates the filtering functions of wetlands. Table 2.8 shows levels of faecal coli and ammonia recorded in 2000 at monitoring points upstream and downstream of wetland areas. This suggests that 2 km of watercourse with large segments of instream reedbeds is capable of assimilating up to 98.6 percent of the faecal coli present and up to 55.8 percent of the ammonia (nitrates). An additional 2 km reduces the faecal coli by an additional 96.1 percent and ammonia by 50 percent (City of Johannesburg 2001, Holgate 2002).

Table 2.8 Reduction of faecal coli and ammonia due to wetland filtering. Source: City of Johannesburg 2001. Notes: The maximum faecal coli concentration considered acceptable is 130/100 ml. The maximum ammonia concentration considered acceptable is 0.03 mg/l.

<table>
<thead>
<tr>
<th>Monitoring point</th>
<th>Faecal coli (per 100 ml)</th>
<th>Ammonia (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point 1a (upstream)</td>
<td>150 818 (330 000)</td>
<td>16.5 (42.0)</td>
</tr>
<tr>
<td>Point 1b (2 km downstream)</td>
<td>573 (2 300)</td>
<td>7.3 (14.5)</td>
</tr>
<tr>
<td>Point 2a (upstream)</td>
<td>41 864 (330 000)</td>
<td>1.7 (5.8)</td>
</tr>
<tr>
<td>Point 2b (2 km downstream)</td>
<td>564 (2 600)</td>
<td>0.8 (4.5)</td>
</tr>
<tr>
<td>Point 2c (4 km downstream)</td>
<td>22 (200)</td>
<td>0.4 (1.0)</td>
</tr>
</tbody>
</table>

Urban biodiversity

The urbanisation of Gauteng Province during the past century and a half has had serious consequences for its biodiversity. DACE has a comprehensive database on the condition and trends of biodiversity in the province. In an attempt to contain urban development and protect rural areas from urban sprawl, an urban edge has been delineated, outside of which no further urban development may occur (Figure 2.39). This urban edge spreads over about 20 percent of the province and is already developed significantly. Not only is the province dealing with the impacts of urban development on biodiversity, but the Highveld grasslands of the province are also suitable for cultivation, with 16 percent of the province supporting crop production.
It is estimated that only about 30 percent of Gauteng Province is in a natural (and highly fragmented) state. This figure is probably an overestimate of natural land cover as it is based on a national landcover database, which does not distinguish between untransformed and secondary grasslands that were once ploughed for cultivation but are now recovering grasslands. This is an important distinction, however, because a grassland will never recover to its previous state after being transformed; grass may regrow but plant diversity associated with that grassland is irrevocably lost (van Wyk, pers. comm.). DACE has begun ground-truthing the areas classified as “natural,” and initial field surveys indicate that only 50 percent are actually natural.

With only 60 percent of the province in a natural state (albeit a very fragmented one), the thresholds of ecological integrity and function are very close to being reached (Franklin and Forman 1987, Reyers et al. 2001). Only 1.7 percent of the province falls into provincial protected areas, with another 4.6 percent in private and municipal reserves, natural heritage sites, bird sanctuaries, and protected natural environments. These levels are far below the 10 percent target recommended by the Convention on Biological Diversity. Roads and other urban infrastructure make up a significant portion of the province (14.3 percent and 54.3 percent respectively within the urban edge). Over 77 percent of the grasslands, of which Gauteng is a major part, occur in fragments of less than 10 square kilometres, of which 46 percent occur in fragments less than 2 square kilometres (Neke and du Plessis 2004). This poses potential problems for habitat connectivity, meta-population dynamics, and related ecosystem resilience.

The province has a large number of threatened wetlands, of which about only eight percent fall within protected areas, while 80 percent are within the urban edge. In addition, almost 32 percent of urban perennial streams are denuded of riparian vegetation. The province is also significantly degraded by invasions of alien plants and animals (Figure 2.40b). The highest numbers of threatened species coincide with the urban edge (Figure 2.40c). Some native species have increased in abundance, possibly because of increased habitat diversity, and the presence of gardens and green spaces. The Grey Go-away Bird, Rameron Pigeon, and Black-collared Barbet are common indigenous bird species that have expanded their ranges as the result of urban development and associated planting of trees, for example.
Condition and Trends of Ecosystems and Human Well-Being

Figure 2.40 Biodiversity in Gauteng: (a) Distribution of wetlands illustrating provincial (red) and private nature reserves (pink); (b) Total number of threatened species per quarter degree grid square; (c) Areas (in green) that are invaded by alien plant species. Source: Gauteng Nature Conservation 2003, SAPIA (Henderson 1998).

Figure 2.41 illustrates the percentage of land in different landcover classes in Gauteng Province and within the urban edge, highlighting the predominance of urban and other artificial areas. An average of 179 square metres of vegetated open space is available per urban resident in Gauteng. Roads significantly threaten biodiversity in the province, with impacts including habitat fragmentation, noise and chemical pollution, road kills, construction effects, and increased behavioural modifications in wildlife. Road density is 1.7 hectares per square kilometre in rural areas and 5.5 hectares per square kilometre within the urban edge. Road zone effects (Reyers et al. 2001) impact on more than half the natural habitat in the province, and on almost ninety percent of the natural habitat within the urban edge.

Judging by the number of invasive species and species threatened by urbanisation in the province (see Figure 2.42b), from plant, vertebrate, and invertebrate surveys in the region (Gauteng Nature Conservation 2003), the problem of invasive species is significant. An analysis of invaded areas using the Southern African Plant Invaders Atlas (SAPIA) database (Henderson 1998) shows that 17 percent of invaded areas contain more than ten invasive plant species, 15 percent contain between five and ten invasive plant species, while 68 percent of invaded areas contain less than five invasive plant species.
Figure 2.41 Land cover in Gauteng Province showing (a) the percentage cover of various land uses within the province and within the urban edge and (b) road effects on the province and the urban edge. Categories are not mutually exclusive and thus will not total 100 percent. Sources: Landcover 2000 (Fairbanks et al. 2000), Gauteng Nature Conservation 2003, Chief Directorate: Department of Surveys and Mapping 2003. Notes: (a) PA = protected areas. Level 1 = provincial nature reserves, i.e. protected areas with strong legislative and institutional protection; Level 2 = municipal nature reserves, natural heritage sites, bird sanctuaries, protected natural environments, private nature reserves. (b) * Adjusted sealed surface = subtraction of 30 percent to account for all untarred roads in rural areas and gardens/landscaped areas in residential areas; no GIS data available to verify this. * 500 m buffer; ** 200 m buffer;
Figure 2.42 Number of species per taxonomic group occurring in Gauteng which are (a) threatened by urbanisation and (b) invasive species. Sources: (a) Gauteng Nature Conservation 2003; (b) SAPIA (Henderson 1998).

Box 2.27 A Survey of Urban Backyards

Despite the images cities evoke of concrete and high-rises, many urban yards provide ecosystem services to city dwellers. In Gauteng, residential yards and gardens can be refugia of biodiversity, as well as plants used for food, decoration, or other purposes. The large income gap in Gauteng is reflected in the diversity of its neighbourhoods, and the nature and purpose of plants grown in yards also vary. To see if socioeconomic differences are expressed in terms of yard or garden plant composition, an investigation was carried out in the city of Pretoria in Gauteng’s Tshwane Municipality. Each yard surveyed was defined as belonging to a wealthy residence, a middle-income residence, a township, or an informal settlement. Measurements were made of the proportion of each yard covered by hard surfaces, vegetated surfaces, water, alien plants, and indigenous plants, and the use or purpose of the plants (e.g. for food, decoration) was noted.

It was discovered that:
- Wealthy residents have the largest yards, averaging 1230 square metres, middle-income yards average 373 square metres, townships yards average 241 square metres, and yards in informal settlements average 46 square metres.
- The fraction of the area covered by hard surfaces, water, evergreen plants, plants used for decorative purposes, and grass was not significantly different between socioeconomic households.
- People from informal settlements and townships use a larger portion of their yards for food than for decorative purposes.
- In informal settlements, basic needs seem to be a key determinant of yard use. One inhabitant, asked to comment about the relationships between residents of informal settlements and biodiversity, maintained that although they do not intentionally introduce alien plants, they do clear vegetation that creates a hindrance to finding shelter.
