Appendix A

Color Maps and Figures

Figure 4.3. The 14 WWF Biomes and Eight Biogeographic Realms of the World. Biomes are coded in colors and listed with abbreviations that will be used in following figures and tables (e.g., TMF). Biogeographic realms are named in the figure. Ecoregions are nested within both biomes and realms.
Figure 4.4. Land Cover Composition of Six of the Eight Terrestrial Biogeographic Realms. Oceania and Antarctica are omitted because land cover data were not available.

Figure 4.6. Land Cover Composition of 14 Terrestrial Biomes. Biome codes as in Figure 4.3. Tundra bar does not reach 100% because 7% of this biome was unclassified by the land cover dataset.
Figure 4.10. Global Species Richness of Terrestrial Mammals per Half-degree Cell. $N = 4,734$. Dark orange colors correspond to higher richness, dark blue colors correspond to lower richness. Maximum richness equals 258 for mammals. Color scale based on 20 equal-area classes. (Baillie et al. 2004)

Figure 4.11. Global Species Richness of Amphibians per Half-degree Cell. $N = 5,743$. Dark orange colors correspond to higher richness, dark blue colors correspond to lower richness. Maximum richness equals 142 for amphibians. Color scale based on 20 equal-area classes. (Baillie et al. 2004).
Figure 4.12. Global Richness of Finfish Species (and Finfish Families in Parentheses) across FAO Areas (data source Froese and Pauly 2003)

Figure 4.13. Global Species Richness of Vascular Plants Modeled and Mapped across Ecoregions. Dark orange colors correspond to higher richness, dark blue colors correspond to lower richness. Maximum richness equals 10,000 for plants. Color scale based on 20 equal-area classes. (Kier et al. 2002; Olson et al. 2001)
Figure 4.16. Major Anthropogenic Variables Acting as Drivers of Change on Different Scales of Ecological Organization or Biodiversity Levels. Color=degree of driver impact on ecological scale (red=maximum impact followed by orange, then yellow); ↑=upward trend of driver impact on ecological scale; 1 to 5=degree of impact reversibility (5=least reversible); Shading=degree of certainty based on expert knowledge (dark shading=least certain); ?=information on trends unknown. Impact indices were based on a year 2010 timeframe.

Figure 4.18. Density Map on Extent to Which the Ranges of Threatened Bird Species Have Contracted in Central and South America. The color scale indicates the number of threatened bird species that used to occur in a pixel, but now no longer do so. (BirdLife International 2004a; unpublished data from BirdLife’s World Bird Database)
Figure 4.22. Background and Contemporary Extinction Rates. Background extinction rates are in black, extinction rates based on observed extinctions over the past 100 years are in yellow and estimated contemporary extinction rates using a number of different approaches are in orange. Based on background extinction rates from the fossil record: aMay (1995), bAlroy (1998) (lower estimate of 0.21), cFoote (1997) (higher estimate of 0.46). Observed extinctions over the past 100 years: d, e, fBaillie et al. (2004). Projections based on threatened species: gPimm and Brooks (1997), hSmith et al. (1993) (also uses recently extinct species), Mace (1994). Plant extinctions using species-area curve with assumptions about habitat loss from agricultural/urban expansion and from climate change: iMA Scenarios, Chapter 10. Increased energy consumption: jEhrlich (1994). Species-area relationship from deforestation rates: four studies in kReid (1992).
Figure 4.25. Density Distribution Map of Globally Threatened Mammal and Bird Species Mapped at a Resolution of 1/4 Degree Grid Cell. N = 1,063 mammals and 1,213 birds. Dark orange colors correspond to higher richness, dark blue colors to lower richness. Maximum richness equals 25 for mammals and 25 for birds. Color scale based on 10 equal-area classes. (Baillie et al. 2004)
Figure 5.5. Global Distribution of Infant Mortality Rate (Robinson Projection; UNICEF, DHS, NSOs, NHDRs)
Figure 5.8. MA Regions and Systems and Relative Measures of Well-being

Figure 5.9. Infant Mortality Rate in MA Subsystems, Regional Averages Compared with Global Averages

Box 5.2 Figure A

Box 5.2 Figure B
Figure 6.3. Polynomial Trends in the Numbers of Natural Disasters, Persons Killed, and Persons Affected, 1974–2003 (CRED 2003)

<table>
<thead>
<tr>
<th>Reasons for Concern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming °C</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0 (present)</td>
</tr>
</tbody>
</table>

Figure 6.6. Climate Change Risks for Agricultural Systems. The five “Reasons for Concern” follow the IPCC’s template from the Third Assessment Report’s Summary for Policymakers (IPPC 2001). (Downing 2002)
Figure 7.1. Global Renewable Water Supply as River Discharge and Populations Dependent on Accessible Runoff at Point of Origin. River flows, or total blue water (B_t) is that water passing through 50 km x 50 km grid cells. The top map depicts the global renewable water supply. The bottom map depicts total renewable blue water that is accessible to humans (B_a). Due to their remoteness, some high runoff-generating regions (e.g., Amazonia) fail to support significant populations and are effectively inaccessible. Populations served by nonrenewable groundwater or desalinization are not shown. Table 7.2 gives aggregated regional summaries of the geographic distributions shown here. (Dividing by 31.7 converts values in the top map into units of cubic kilometers per year.)
Figure 7.3. **Contemporary Geography of Non-sustainable Withdrawals for Irrigation.** The following divisions based on calculated consumptive use by crops were used: High overdraft: <1 km³/yr; Moderate: 0.1–1 km³/yr; Low: 0–0.1 km³/yr. All estimates made on ca. 50 km x 50 km resolution grids. The map indicates where there is insufficient fresh water to fully satisfy irrigated crop demands. The imbalance in long-term water budgets necessitates diversion of surface water or the tapping of groundwater resources. The areas shown with moderate-to-high levels of non-sustainable use occur over each continent and are known to be areas of aquifer mining and/or major water transfer schemes.

Figure 7.5. **Contrast between Mid-1990s and Pre-disturbance Transports of Total Nitrogen through Inland Aquatic Systems Resulting from Anthropogenic Acceleration of This Nutrient Cycle.** While peculiarities of individual pollutants, rivers, and governance define the specific character of water pollution, the general patterns observed for nitrogen are representative of anthropogenic changes to the transport of waterborne constituents through inland waterways. Elevated contemporary loading to one part of the system (e.g., to croplands) often reverberate through other parts of the system (e.g., coastal zones), exceeding the capacity of natural systems to assimilate additional constituents. (Green et al. 2004)
Figure 7.10. **Percentage of Cropland Area by River Basin.** Cropland areas exclude those with more balanced mosaics of cropland and natural vegetation. (Revenga et al. 2000)

Figure 7.11. **Percentage Urban and Industrial Land Use by River Basin** (Revenga et al. 2000)
Figure 7.13. Proportion of Population with Improved Drinking Water Supply, 2002 (WHO/UNICEF 2004)

Virtual Water in Crop Production (km3/yr)

<table>
<thead>
<tr>
<th>Rainfed</th>
<th>Irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>0.1 to 0.5</td>
<td>0.1 to 0.5</td>
</tr>
<tr>
<td>0.5 to 1</td>
<td>0.5 to 1</td>
</tr>
<tr>
<td>> 1</td>
<td>> 1</td>
</tr>
</tbody>
</table>

Virtual Water for Africa (km3/yr)

<table>
<thead>
<tr>
<th></th>
<th>Crops 1</th>
<th>Meat 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>1326</td>
<td>289</td>
<td>1615</td>
</tr>
<tr>
<td>Percent of AET 3</td>
<td>9%</td>
<td>2%</td>
<td>11%</td>
</tr>
<tr>
<td>Imports</td>
<td>404</td>
<td>21</td>
<td>425</td>
</tr>
<tr>
<td>Exports</td>
<td>50.5</td>
<td>0.3</td>
<td>50.8</td>
</tr>
<tr>
<td>VW Balance</td>
<td>1680</td>
<td>309</td>
<td>1989</td>
</tr>
</tbody>
</table>

1 VW in crops = AET over rainfed cropland + PET over irrigated cropland.
2 VW in meat = VW in feed/fodder + 30% AET over grazing land.
3 AET = actual evapotranspiration; percent relative to continental total.

Box 7.4 Figure A

Box 7.4 Figure B
Figure 8.2 Spatial Distribution of Value of Food Production for Crops, Livestock, and Fisheries, 2000. The map shows the approximate value of production in year 2000 using FAOSTAT (2003) production data for all food crops and livestock products weighted by a set of 1989–91 global average commodity prices denominated in International US dollars. These prices are used by FAO to compute its Production Indices. The image was constructed from a composite rainfed-irrigated cropland surface using the global 1992–3 cropland map of Ramankutty and Foley (1998) intersected by the global irrigation map of Doell and Siebert (1999). Crop production was allocated by country in proportion to the share of each 100 km² occupied by rainfed and irrigated agriculture assuming irrigated agriculture is, on average, twice as productive as rainfed agriculture. Livestock production was allocated across a global pasture dataset (Foley et al. 2003) by country, assuming production was distributed into each pixel in proportion to its area of pasture/rangeland.

Figure 8.3 Spatial Distribution of Food Production in Parts of Asia for Crops, Livestock, and Fisheries, 2000. This map shows a detail of Figure 8.1. Notice the high value of food production—both marine and terrestrial—in coastal areas.
Figure 9.1 Forest Regions Used in Wood Products Analyses. Regions are based on closed forest cover, continents, climate, and national boundaries. (FAO 2001a; cartography, P. Gonzalez)

Figure 10.1 Summary of Different Kinds of Natural Product Structures Produced by Different Organisms (Bioactive Natural Product Database, Szenzor Management Consulting Company, Budapest, cited in Henkel et al. 1999)
Ecosystems and Human Well-being: Current State and Trends

Box 10.3 Figure Lake in Australia Covered by the Weed Salvinia
(Photos from CSIRO, Australia)

The Same Lake Six Months Later Following the Release of a Weevil Biological Control Agent

Figure 12.3 Contrast between Contemporary and Preindustrial Loadings of Easily Transported Nitrogen onto Land Mass of Earth and Geography of Relative Increases in Riverborne Nitrogen Fluxes Resulting from Anthropogenic Acceleration of Cycle. Contemporary time is from the mid-1990s. While the peculiarities of individual pollutants, rivers, and governance define the specific character of water pollution, the general patterns observed for nitrogen are representative of anthropogenic changes to the transport of waterborne constituents. Elevated contemporary loadings to one part of the system (e.g., to croplands) often reverberate to other parts of the system (e.g., coastal zones), exceeding the capacity of natural systems to assimilate additional constituents. (Green et al. 2004)
Figure 12.6 Global Map of Soil Sensitivity to Acidic Inputs from Atmospheric Sulfur and Nitrogen Deposition. This map shows the ability of the soil to buffer acid deposition. Problems of acidification are most likely to arise where high projected rates of deposition coincide with high sensitivity—for instance, in Southeast Asia. (Kuylenstierna et al. 2001)
Figure 13.5 Maps of Carbon Dioxide Fluxes Estimated from Atmospheric Measurements, July 1995 to June 2000 (in gC/m²/year) (Rödenbeck et al. 2001). The spatial allocation of sources and sinks of CO₂ is derived from measurements of atmospheric concentrations from a network of sites over the globe using a technique known as inverse modeling. This technique gives the sum of all fluxes. Positive numbers denote a source into the atmosphere; negative numbers denote a sink from the atmosphere. The magnitude and spatial allocation of fluxes is very sensitive to the number of measuring sites and the time period of the analysis. The top figure is the total flux excluding fossil fuel emissions to highlight the terrestrial vegetation fluxes. The bottom figure includes fossil fuel emissions; therefore land areas appear to be sources or smaller sinks.
Figure 13.8 Map of Land Surface Albedo Captured by the MODIS Satellite Instrument (Schaaf et al. 2002; Lucht et al. 2000). Albedo is the fraction of solar radiation reflected back into the atmosphere from Earth’s surface. Higher albedo means that more energy leaves the planetary boundary layer (net cooling of the atmosphere). Regions where there were no data available, e.g., due to clouds, are indicated by black. The top figure is of data sampled in January 2001. In the northern areas during the winter season, snow albedo is very high (up to 0.8, red). The boreal forest belt can be clearly seen in blue and green since trees mask snow, reduce albedo, and warm the surface air during the snow season. The bottom figure is of data sampled in June 2001. In comparison with January 2001, the northern land areas have a much lower albedo due to the absence of snow. In this map, the area with the highest albedo (up to 0.5, green and yellow) is the Sahara desert. High albedo in this region suppresses rainfall during the summer rain season.
Figure 14.1 Current Map of Infectious and Parasitic Diseases

Figure 16.3 Residence Time in Lakes, Reservoirs, and Soils, by Basin (Green et al. 2004)

Figure 16.2 MODIS Fire Pixels Detected May 20–22, 2004 (Image courtesy of MODIS Rapid Response Project at NASA/GSFC)
Figure 16.6 Global Patterns of Burned Area in 2000, Based on the GBA2000 Product (Grégoire et al. 2003)

Figure 16.7 Map of Most Frequent and Exceptional Fire Events in the Tropics, 1997–2000 (Lepers 2003)
Figure 16.10 Main Areas of Deforestation and Forest Degradation and Number of Floods, by Country, 1980–2000 (Lepers 2003; OFDA/CRED)
Figure 18.7 Predator Diversity in the Ocean. Predicted from the Northwest Atlantic Longline Logbook (A), Observer Data (B), Hawaiian Observer Data (C), and Australian Observer Data (D). Codes indicate level of species diversity. Dotted line represents 1,000-m isobaths, identifying the outer margins of continental slopes. (Worm et al. 2003)
Figure 18.8 Changes in Marine Biomass in North Atlantic in 1900, 1950, 1975, and 1999 (in tons per square kilometer) (Christensen et al. 2003)
Figure 18.17 Changes in Distant Water Fleet Access as Number of Agreement Years for 1960s, 1970s, 1980s, and 1990s (Alder and Sumaila 2004)
Figure 19.5 Global Distribution of Mangrove Forests, and Levels of Sediment Loading on Mangroves in the Asia-Pacific Region (UNEP-WCMC 2003a; Syvitski et al. 2005)
Figure 19.6 Global Distribution of Major Coral Reefs and Levels of Nitrogen on Caribbean Coral Reefs (UNEP-WCMC 2003d; Syvitski et al. 2005)
Figure 19.7 Global Distribution of Seagrasses, and Levels of Sediment Loading on European Seagrass Areas (UNEP-WCMC 2003c; Syvitski et al. 2005)
Figure 20.1 Distribution of Inland Water Systems Described as Large Lakes, Reservoirs, and Wetlands (Adapted from Lehner and Döll 2004 and LakeNet)

Figure 20.2 Summary Analysis of Capacity of a Range of Ecosystems to Produce Services (WRI et al. 2000)

Figure 20.4 Number of Threatened versus Non-threatened Wetland-dependent Amphibian Species by Major Habitat Type I (Data compiled under the Global Amphibian Assessment; IUCN et al. 2004)
Figure 20.7 Pictorial Presentation of the Direct Drivers of Change in Inland Waters (Ratner et al. 2004)

- **Large-scale irrigation and river diversions**: Alter natural flow regimes, reduce downstream water availability for agriculture, and contribute to salinization through saltwater intrusion in the coastal zone.

- **Agricultural expansion**: Is often achieved by converting natural inland water systems, reducing aquatic biodiversity and natural flood control functions, and increasing soil salinity through evaporation. When accompanied by intensive use of agrochemicals, off-site pollution effects can be extensive.

- **Overharvesting of wild resources, especially fish**: Driven both by the subsistence needs of a growing population and by unsustainable commercial exploitation, threatening future food security and livelihoods.

- **Roads and flood control infrastructure**: Often interrupt wetland connectivity, disrupting aquatic habitat, reducing the function of wetlands to remove pollutants and absorb floodwaters, and potentially increasing the losses when high floods do occur.

- **Dams**: Interrupt the connectivity of river systems, disrupting fish spawning and migration. Dams with large reservoirs alter seasonal flood regimes and retain sediment needed to maintain the productivity of floodplain agriculture.

- **River channelization and dredging for navigation**: Reduces riverine habitat and alters flood patterns.

- **Forest clearing**: In permanently or seasonally inundated zones, often motivated by unsustainable aquaculture production, dramatically reduces habitat for wild aquatic organisms. In the coastal zone, it also makes the landscape much more susceptible to erosion.

- **Urban and industrial pollution**: When released untreated into aquatic environments, reduces water quality, affecting the diversity and abundance of aquatic organisms as well as human health.
Figure 20.8 Changes in the Aral Sea, 1960–2001 (UNEP 2002)
Figure 20.9 Changes in Area of Water in Lake Chad, 1963–2001 (UNEP 2002)
Figure 20.10 Changes in the Mesopotamian Marshes, 1973–2000 (Partow 2001)

Figure 20.11 Fragmentation and Flow Regulation of Global Rivers (Revenga et al. 2000)
Figure 21.1 Global Forest and Woodland Cover by Aggregated Category and Continent. Open forests and fragmented forests have a canopy closure from 10–40%, and closed forests have a canopy closure of less than 40%. (FRA 2000 datasets)

Figure 21.2 Distribution of Global Forests by Ecological Zone (FRA 2000 datasets)
Figure 23.1 Fishing Pressure in Coastal Areas Based on the Number of People Actively Fishing per Kilometer of Coastline
Figure 23.2 Sewage Pollution Index for Coastal Areas
Figure 24.5 Mountains of the World Based on Topography Alone (Kapos et al. 2000) Copyright UNEP-WCMC, Cambridge, UK
Figure 25.1 Major Subtypes of Arctic and Antarctic Terrestrial Ecosystems (Arctic modified from McGuire et al. 2002; Antarctic modified from Holdgate 1970)

Figure 25.8 Interaction of Global and Northern Hemisphere Temperature Trends (Hinzman et al. in press; Mann et al. 1999)
Figure 26.1 Evolution of Cultivated Systems from Pre-Industrial to Contemporary Times (Ramankutty et al. 2002)

Figure 26.2 Contemporary Global Extent of Cultivated Systems (Wood et al. 2000)
Figure 26.3 Agroecological Characterization of Cultivated Systems. This map classifies cultivated systems according to their major agroecological characteristics. Farm management practices have not been mapped consistently at a global scale, but important agroecological sub-divisions determined by climate, rainfall, irrigation, and slope are broadly indicative of the type of cultivation opportunities and constraints. This typology also gives some indication of potential productivity and of cultivation externalities—e.g., irrigation suggests higher productivity and a more intensive use of freshwater resources; cultivation in semiarid and sloping areas may have lower productivity and higher potential for soil erosion (Wood et al. 2000). The map is a composite of the 1 km. resolution global irrigation map produced by Kassel University and FAO (Doell and Siebert 2002), climate data from the Global Agroecological Zones project (FAO/IASA 2001) and the PAGE agricultural extent (Wood et al. 2000).
Figure 27.1 Urban Areas across the Globe (Copyright 2004: The Trustees of Columbia University in the City of New York. Center for
International Earth Science Information Network, Columbia University; International Food Policy Research Institute, World Bank; and Centro
University. Available at http://sedac.ciesin.columbia.edu/gpw.)

Figure 28.1 Areas of Rapid Land Cover Change Involving Defor-
estation and Forest Degradation (Lepers et al. 2005)

Figure 28.2 Areas of Rapid Land Cover Change Involving De-
sertification and Land Degradation (Lepers et al. 2005)
Figure 28.3 Areas of Rapid Land Cover Change Involving Changes in Urban Extent (Lepers et al. 2005)

Figure 28.4 The Living Planet Index, 1970–2000. The Living Planet Index is an indicator of the state of the world’s biodiversity: it measures trends in populations of vertebrate species living in terrestrial, freshwater, and marine ecosystems.
Appendix B

Authors

Argentina
Daniel Cáceres, Universidad Nacional de Córdoba
Sandra Díaz, Universidad Nacional de Córdoba—CONICET
Thomas Kirzberger, Universidad Nacional del Comahue
Ernesto Viglizzo, National Institute for Agricultural Technology

Australia
Andrew Beattie, Macquarie University
Steve Blaber, Commonwealth Scientific and Industrial Research Organisation
Nesa Boopalan Elizer, Independent Scholar
C. Max Finlayson, Environmental Research Institute of the Supervising Scientist
Alex Hyatt, Commonwealth Scientific and Industrial Research Organisation
Shahbaz Khan, Commonwealth Scientific and Industrial Research Organisation
Roger Leakey, James Cook University
Kerrie Wilson, University of Queensland

Austria
Ian McCallum, International Institute for Applied Systems Analysis
Sten Nilsson, International Institute for Applied Systems Analysis
Anatoly Shvidenko, International Institute for Applied Systems Analysis

Botswana
Hillary Masundire, University of Botswana

Brazil
Tania Braga, Universidade Candido Mendes
Ulisses Confalonieri, Fundação Oswaldo Cruz
Elaine Elisabetksy, Universidade Federal do Rio Grande do Sul
Gustavo Fonseca, Federal University of Minas Gerais
Mauro Galetti, University of Sao Paulo
Paulo Lana, Universidade Federal do Paraná
Flávio Luizao, INPA-Ecologia
Eduardo Marone, Centro de Estudos do Mar
Maria Assuncao Silva Dias, Universidade de Sao Paulo
Pedro Vasconcelos, Instituto Evandro Chagas
Christina Whiteman, Universidade Federal Rural da Amazônia

Burkina Faso
Laurent Yameogo, World Health Organisation

Cambodia
Sarah Porter, IUCN—The World Conservation Union

Canada
W. L. Adamowicz, University of Alberta
Zafar Adeel, United Nations University
Jacqueline Alder, University of British Columbia
Sabrina Barker, Environment Canada
Jules Blais, University of Ottawa
Villy Christensen, University of British Columbia
David Cooper, Secretariat of the Convention on Biological Diversity
Paola Deda, Secretariat of the Convention on Biological Diversity
Katia Freire, University of British Columbia
Jack Ives, Independent Scholar
Tim Johns, McGill University
Joseph Kalemani Mulongoy, Secretariat of the Convention on Biological Diversity
Kris Kaschner, University of British Columbia
Caroline King, United Nations University
Adrian Kitchingman, University of British Columbia
Peter Leavitt, University of Regina
Randy Milton, Nova Scotia Department of Natural Resources
Parastu Mirabzadeh, Independent Scholar
Maria-Lourdes Paloma, University of British Columbia
Daniel Pauly, University of British Columbia
William Rees, University of British Columbia
Dave Schindler, University of Alberta
Rashid Sumaila, University of British Columbia
Ian Thompson, Canadian Forest Service
Peter Tyedmers, Dalhousie University
Marjo Vierros, Secretariat of the Convention on Biological Diversity
Rolf Vinebrooke, University of Alberta

Chad
Mahamat Hassane Idriss, Department of the Environment

China
Chen Ma, Peking University
Yvonne Sadovy, The University of Hong Kong
Tianxiang Yue, Chinese Academy of Sciences

Colombia
Juan Restrepo, EAFIT University
Maria Rivera, Ministry of the Environment

Costa Rica
Edgar Gutierrez-Espeleta, Universidad de Costa Rica

Denmark
Thomas Theis Nielsen, University of Copenhagen

Ecuador
Fander Falconi, Facultad Latinoamericana de Ciencias Sociales
Robert Hofstede, International Potato Centre
Morocco
Said Hajib, Department of Water, Forests and Land

Namibia
Julianne Ziedler, Natuye—Institute for the Environment

Nepal
Narpat Singh Jodha, International Centre for Integrated Mountain Development

Netherlands
Rob Alkemade, National Institute for Public Health and the Environment
Bas Amelung, University of Maastricht
Joost Brouwer, Brouwer Environmental and Agricultural Consultancy
Rudolf de Groot, Wageningen University
Ward Hagermeijer, Wetlands International
Marcel Silvius, Wetlands International
Agnes van den Berg, Wageningen University
Dirk Wascher, Alterra—Green World Research

New Zealand
Roberta Farrell, University of Waikato
Gamini Wijesuriya, Department of Conservation

Nigeria
Oladele Osibanjo, University of Ibadan

Norway
Erling Berge, Norwegian University of Science and Technology
Siri Eriksen, University of Oslo

Pakistan
Abid Hussainy, Aga Khan University Institute for Educational Development
Syed Saifullah, University of Karachi

Panama
Scott Muller, Conservation and Development Strategy Associates

Philippines
Jurgenne Primavera, Asian Fisheries Development Centre
Juan Pulhin, University of the Philippines
Agnes Rola, University of the Philippines

Portugal
Henrique Miguel Pereira, Universidade de Lisboa

Russian Federation
N.V. Aladin, Zoological Institute Russian Academy of Sciences
I.S. Plotnikov, Zoological Institute Russian Academy of Sciences
Sergei Zimov, North East Science Station

Senegal
Racine Kane, United Nations Development Programme

Singapore
Poh Poh Wong, National University of Singapore

Slovenia
Gordana Beltram, Ministry of the Environment and Spatial Planning

South Africa
Emma Archer, University of the Witwatersrand
Allan Batchelor, B&H Environmental Services (Pty) Ltd
William Bond, University of Cape Town
George Branch, University of Cape Town
Connal Eardley, Agricultural Research Council
Rashid Hassan, University of Pretoria
Clifford Muteru, International Water Management Institute
Belinda Revers, Council for Scientific and Industrial Research
Bob Scholes, Council for Scientific and Industrial Research
Mary Scholes, University of the Witwatersrand
Berndt van Rensburg, University of Pretoria
Coleen Vogel, University of Witwatersrand
Maureen Wolfson, South African National Biodiversity Institute
Gina Ziervogel, Dept of Enviro & Geographical Science

Spain
Juan Puigdefàbregas, Higher Council for Scientific Research
Montserrat Vila, Autonomous University of Barcelona

Sri Lanka
Felix Amerasinghe, International Water Management Institute
Rebecca Tharme, International Water Management Institute

Sweden
Terry Callaghan, Abisko Scientific Research Station
Torben Christensen, Lunds University
Anne-Sophie Crépin, The Beijer International Institute of Ecological Economics
Kjell Danell, Independent Scholar
Thomas Elmqvist, Stockholm University
Carl Folke, Stockholm University
Guoyi Han, Stockholm Environment Institute
Christer Nilsson, Umeå University
Reidar Persson, Swedish University of Agricultural Sciences
Cathy Reidy, Umeå University

Switzerland
Robert Bos, World Health Organization
Harald Bugmann, Swiss Federal Institute of Technology Zurich
Nick Davidson, Ramsar Convention on Wetlands
Fortunat Joos, University of Bern
Christian Körner, University of Basel
Bruno Messerli, University of Bern
David Pitt, Independent Scholar
Mel Reasoner, Independent Scholar
Eva Spehn, Global Mountain Biodiversity Assessment, Basel

Tanzania
Mwele Malecela-Lazaro, National Medical Research Institute
Alan Rodgers, United Nations Development Programme

Thailand
Miguel Fortes, United Nations Educational, Scientific and Cultural Organisation

Trinidad and Tobago
John Agard, University of the West Indies
Sherry Heileman, Independent Scholar

Turkey
H. Resit Akcakaya, Applied Biomathmatics

Ukraine
Petro Lakysa, Ukrainian National Agrarian University
Iskandar Mirabdullaev, Independent Scholar
Raisa Toryannikova, Independent Scholar
United Kingdom
Neville J. Ash, UNEP-World Conservation Monitoring Centre
Jonathan Baillie, Institute of Zoology, Zoological Society of London
Andrew Balmford, Cambridge University
Richard Betts, Hadley Centre for Climate Prediction and Research
Nadia Bystrakova, University of Cambridge
John Chilton, British Geological Survey
Zoe Cokeliss, Institute of Zoology, Zoological Society of London
Peter Convey, British Antarctic Survey
Sarah Cornell, University of Bristol
Peter Daszak, Consortium for Conservation Medicine
Ian Douglas, University of Manchester
Tom Downing, Stockholm Environment Institute, University of York
Rhys Green, Cambridge University
Brian Groombridge, UNEP-World Conservation Monitoring Centre
Craig Hilton-Taylor, IUCN—The World Conservation Union
Joanna House, University of Bristol
Sandra Kadungure, University of Leeds
Valerie Kapos, UNEP-World Conservation Monitoring Centre
Georgina Mace, Institute of Zoology, Zoological Society of London
Gordon McGranahan, International Institute for Environment and Development
Douglas McNab, Overseas Development Institute
David Molyneux, Liverpool School of Tropical Medicine
Dorian Moro, University of Wales
Musonda Mumba, University College London
Eugene Murphy, British Antarctic Survey
Laszlo Nagy, McConnell Associates
Mark Nuttall, University of Aberdeen
Simon Potts, University of Reading
Ghillean Prance, Independent Scholar
Jules Pretty, University of Essex
Martin Price, Perth College
Andy Purvis, Imperial College London
David Satterthwaite, International Institute for Environment and Development
Marko Scholze, University of Bristol
Alison Stattersfield, Birdlife International
Kerry ten Kate, Insight Investment
Jillian Thonell, UNEP—World Conservation Monitoring Centre
Jinliang Wang, Institute of Zoology, Zoological Society of London
Andrew Wilby, University of Reading
Christoph Zockler, UNEP—World Conservation Monitoring Centre

United States
Robin Abell, World Wildlife Fund US
Tundi Agardy, Sound Seas
Tom Allnutt, World Wildlife Fund US
Agustin Arcenas, World Bank
Amseret Asfaw Berhe, University of California, Berkeley
Suresh Chandra Babu, International Food Policy Research Institute
Andrew Bakun, Rosenstiel School of Marine and Atmospheric Science
Deborah Balk, Center for International Earth Science Information Network
Charles Barber, U.S. Agency for International Development
David Read Barker, LakeNet
Jill Baron, Colorado State University
Roger Barry, University of Colorado
Matt Berman, University of Alaska
Charles Birkeland, University of Hawaii
Dee Boersma, University of Washington
Raymond Bradley, University of Massachusetts
Thomas Brooks, Conservation International
Sandra Brown, Winrock International
Manuel Cardoso, University of New Hampshire
Ed Carpenter, San Francisco State University
Kenneth Cassman, University of Nebraska
Christopher Caudill, University of Idaho
Janice Chanson, IUCN—World Conservation Union and Conservation International
Terry Chapin, University of Alaska
Louis Codispoti, University of Maryland
Robert Costanza, University of Vermont
Neil Cox, IUCN—World Conservation Union and Conservation International
Sara Curran, Princeton University
Gretchen Daily, Stanford University
Paul Dayton, Scripps Institution of Oceanography
Ruth DeFries, University of Maryland
Andrew Dobson, Princeton University
Ellen Douglas, University of New Hampshire
Kirstin Dow, University of South Carolina
Hugh Ducklow, College of William and Mary
Richard Dugdale, San Francisco State University
Laurie Duker, LakeNet
Kristie Ebi, Exponent Health Group
Simeon Ehui, World Bank
Joseph Fargione, University of New Mexico
Jon Foley, University of Wisconsin
Gustavo Fonseca, Conservation International
Joanne Gaskell, International Food Policy Research Institute
Anna Goddijn, University of Alaska
Patrick Gonzalez, The Nature Conservancy
Terry Griswold, Utah State University
Kirk Hamilton, World Bank
Lawrence Hamilton, IUCN World Commission on Protected Areas
Drew Harvell, Cornell University
Kenneth Henga, U.S. Department of Agriculture
Mike Hoffmann, Conservation International
Elisabeth Holland, National Center for Atmospheric Research
George Hurtt, University of New Hampshire
Lloyd Irland, The Irland Group and Yale University
Thomas Jaenisch, Johns Hopkins University
Nancy Kanbar, International Food Policy Research Institute
Michael Kaplowitz, Michigan State University
Roger Kasprowski, George Perkins Marsh Institute, Clark University
Elizabeth Kennedy, Conservation International
Zahia Khan, International Food Policy Research Institute
Gary Kofinas, University of Alaska Fairbanks
Karen Kohfeld, City University of New York
Claire Kremen, Princeton University
Rattan Lal, Ohio State University
John Lamoreux, World Wildlife Fund US
William Laurance, Smithsonian Tropical Research Institute
Marc Levy, Columbia University
Noelle Lewis, Independent Scholar
Colby Loucks, World Wildlife Fund US
Pamela Mace, National Marine Fisheries Service
William Masters, Columbia University
Emily Matthews, World Resources Institute
Anthony McGuire, University of Alaska
Charles Mitchell, University of North Carolina
Russell Monson, University of Colorado
Shahid Naem, Columbia University
Roz Naylor, Stanford University
Gerald Nelson, University of Illinois Urbana-Champaign
Authors

Scott Nixon, University of Rhode Island
Stefano Pagiola, World Bank
Jonathan Patz, University of Wisconsin
William F. Perrin, Southwest Fisheries Science Center
Michael Pilson, University of Rhode Island
Alison Power, Cornell University
Daniel Prager, World Resources Institute
Jane Pratt, EcoLogica Inc.
Steve Prince, University of Maryland
Navin Ramankutty, University of Wisconsin
Walter V. Reid, Millennium Ecosystem Assessment
Inbal Reshef, University of Maryland
Carmen Revenga, The Nature Conservancy
Valerie Rhoe, International Food Policy Research Institute
Taylor H. Ricketts, World Wildlife Fund US
Ana Rodrigues, Conservation International
Joshua Rosenthal, Fogarty International Center
Neil Sampson, The Sampson Group, Inc.
Crystal Schaaf, Boston University
Kate Sebastian, International Food Policy Research Institute
Wes Sechrest, IUCN–World Conservation Union and University of Virginia
Roger Sedjo, Resources for the Future
Debdatta Sengupta, Penn State University
R. David Simpson, U.S. Environmental Protection Agency
Melanie Steinkamp, U.S. Fish and Wildlife Service
Simon Stuart, IUCN–World Conservation Union and Conservation International
Madeleine Thomson, International Research Institute for Climate Prediction
David Tilman, University of Minnesota
Juan Valdes, University of Arizona
Ross Virginia, Dartmouth College
Charles Vörösmarty, University of New Hampshire
Diana H. Wall, Colorado State University
Bess Ward, Princeton University
Konard Wessels, University of Maryland
Robin White, U.S. Geological Survey
Keith Wiebe, U.S. Dept of Agriculture
Matthew Wilson, University of Vermont
Stanley Wood, International Food Policy Research Institute
Ulrike Wood-Sichra, International Food Policy Research Institute
Cai Ximing, University of Illinois
Oran Young, University of California
Hania Zlotnik, United Nations Population Division

Uzbekistan
Vyacheslav Aparin, Complex Geological and Ecological Expedition
Elena Bykova, Institute of Zoology, Uzbekistan Academy of Science
Nikolay E. Gorelkin, GEF-Project, Transboundary Water-Monitoring in Aral Sea Region
Alex Kreuzberg, Institute of Zoology, Uzbekistan Academy of Science

Venezuela
Lelys Bravo de Guenni, Universidad Simón Bolívar
Yasmin Rubio-Palis, Universidad de Carabobo
Appendix C

Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>aridity index</td>
</tr>
<tr>
<td>AKRSP</td>
<td>Aga Khan Rural Support Programme</td>
</tr>
<tr>
<td>AMF</td>
<td>arbuscular mycorrhizal fungi</td>
</tr>
<tr>
<td>ASB</td>
<td>alternatives to slash-and-burn</td>
</tr>
<tr>
<td>ASOMPH</td>
<td>Asian Symposium on Medicinal Plants, Spices and Other Natural Products</td>
</tr>
<tr>
<td>AVHRR</td>
<td>advanced very high resolution radiometer</td>
</tr>
<tr>
<td>BCA</td>
<td>benefit-cost analysis</td>
</tr>
<tr>
<td>BGP</td>
<td>Biogeochemical Province</td>
</tr>
<tr>
<td>BII</td>
<td>Biodiversity Intactness Index</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BNF</td>
<td>biological nitrogen fixation</td>
</tr>
<tr>
<td>BOOT</td>
<td>build-own-operate-transfer</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit (Brazil)</td>
</tr>
<tr>
<td>BSE</td>
<td>bovine spongiform encephalopathy</td>
</tr>
<tr>
<td>Bt</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>C&I</td>
<td>criteria and indicators</td>
</tr>
<tr>
<td>CAFO</td>
<td>concentrated animal feeding operations</td>
</tr>
<tr>
<td>CAP</td>
<td>Common Agricultural Policy (of the European Union)</td>
</tr>
<tr>
<td>CAREC</td>
<td>Central Asia Regional Environment Centre</td>
</tr>
<tr>
<td>CBA</td>
<td>cost-benefit analysis</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CBO</td>
<td>community-based organization</td>
</tr>
<tr>
<td>CCAMLR</td>
<td>Commission for the Conservation of Antarctic Marine Living Resources</td>
</tr>
<tr>
<td>CCN</td>
<td>cloud condensation nuclei</td>
</tr>
<tr>
<td>CCS</td>
<td>CO₂ capture and storage</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CEA</td>
<td>cost-effectiveness analysis</td>
</tr>
<tr>
<td>CENICAFe</td>
<td>Centro Nacional de Investigaciones de Café (Colombia)</td>
</tr>
<tr>
<td>CFCs</td>
<td>chlorofluorocarbons</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Consultative Group on International Agricultural Research</td>
</tr>
<tr>
<td>CIFOR</td>
<td>Center for International Forestry Research</td>
</tr>
<tr>
<td>CITES</td>
<td>Convention on International Trade in Endangered Species of Wild Fauna and Flora</td>
</tr>
<tr>
<td>CMS</td>
<td>Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention)</td>
</tr>
<tr>
<td>CONICET</td>
<td>Consejo de Investigaciones Científicas y Técnicas (Argentina)</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties (of treaties)</td>
</tr>
<tr>
<td>CPF</td>
<td>Collaborative Partnership on Forests</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council for Scientific and Industrial Research (South Africa)</td>
</tr>
<tr>
<td>CV</td>
<td>contingent valuation</td>
</tr>
<tr>
<td>CVM</td>
<td>contingent valuation method</td>
</tr>
<tr>
<td>DAF</td>
<td>decision analytical framework</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life year</td>
</tr>
<tr>
<td>DDT</td>
<td>dichloro diphenyl trichloroethane</td>
</tr>
<tr>
<td>DES</td>
<td>dietary energy supply</td>
</tr>
<tr>
<td>DHF</td>
<td>dengue hemorrhagic fever</td>
</tr>
<tr>
<td>DHS</td>
<td>demographic and health surveys</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethyl sulfide</td>
</tr>
<tr>
<td>DPSEEA</td>
<td>driving forces-pressure-state-exposure-effect-action</td>
</tr>
<tr>
<td>DPSIR</td>
<td>driver-pressure-state-impact-response</td>
</tr>
<tr>
<td>DSF</td>
<td>dust storm frequency</td>
</tr>
<tr>
<td>DU</td>
<td>Dobson Units</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>EEZ</td>
<td>exclusive economic zone</td>
</tr>
<tr>
<td>EGS</td>
<td>ecosystem global scenario</td>
</tr>
<tr>
<td>EHI</td>
<td>environmental health indicator</td>
</tr>
<tr>
<td>EIA</td>
<td>environmental impact assessment</td>
</tr>
<tr>
<td>EID</td>
<td>emerging infectious disease</td>
</tr>
<tr>
<td>EKC</td>
<td>Environmental Kuznets Curve</td>
</tr>
<tr>
<td>EMF</td>
<td>ectomycorrhizal fungi</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>E/MSY</td>
<td>extinctions per million species per year</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño/Southern Oscillation</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (United States)</td>
</tr>
<tr>
<td>EPI</td>
<td>environmental policy integration</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EU ETS</td>
<td>European Union Emissions Trading System</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization (United Nations)</td>
</tr>
<tr>
<td>FAPRI</td>
<td>Food and Agriculture Policy Research Institute</td>
</tr>
<tr>
<td>FLEG</td>
<td>Forest Law Enforcement, Governance, and Trade</td>
</tr>
<tr>
<td>FRA</td>
<td>Forest Resources Assessment</td>
</tr>
<tr>
<td>FSC</td>
<td>Forest Stewardship Council</td>
</tr>
<tr>
<td>GATS</td>
<td>General Agreement on Trade and Services</td>
</tr>
<tr>
<td>GATT</td>
<td>General Agreement on Tariffs and Trade</td>
</tr>
<tr>
<td>GCM</td>
<td>general circulation model</td>
</tr>
<tr>
<td>GDI</td>
<td>Gender-related Development Index</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GEO</td>
<td>Global Environment Outlook</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gases</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>GIWA</td>
<td>Global International Waters Assessment</td>
</tr>
<tr>
<td>GLASOD</td>
<td>Global Assessment of Soil Degradation</td>
</tr>
<tr>
<td>GLC</td>
<td>Global Land Cover</td>
</tr>
<tr>
<td>GLOF</td>
<td>Glacier Lake Outburst Flood</td>
</tr>
<tr>
<td>GM</td>
<td>genetic modification</td>
</tr>
<tr>
<td>GMO</td>
<td>genetically modified organism</td>
</tr>
<tr>
<td>GNI</td>
<td>gross national income</td>
</tr>
<tr>
<td>GNP</td>
<td>gross national product</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GRoWI</td>
<td>Global Review of Wetland Resources and Priorities for Wetland Inventory</td>
</tr>
<tr>
<td>GSG</td>
<td>Global Scenarios Group</td>
</tr>
<tr>
<td>GSPC</td>
<td>Global Strategy for Plant Conservation</td>
</tr>
<tr>
<td>GtC-eq</td>
<td>gigatons of carbon equivalent</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>HIA</td>
<td>health impact assessment</td>
</tr>
<tr>
<td>HIPC</td>
<td>heavily indebted poor countries</td>
</tr>
<tr>
<td>HPI</td>
<td>Human Poverty Index</td>
</tr>
<tr>
<td>HPS</td>
<td>hantavirus pulmonary syndrome</td>
</tr>
<tr>
<td>HWB</td>
<td>human well-being</td>
</tr>
<tr>
<td>IAA</td>
<td>integrated agriculture-aquaculture</td>
</tr>
<tr>
<td>IAM</td>
<td>integrated assessment model</td>
</tr>
<tr>
<td>IBI</td>
<td>Index of Biotic Integrity</td>
</tr>
<tr>
<td>ICBG</td>
<td>International Biotic Integrity Groups</td>
</tr>
<tr>
<td>ICDP</td>
<td>integrated conservation and development project</td>
</tr>
<tr>
<td>ICJ</td>
<td>International Court of Justice</td>
</tr>
<tr>
<td>ICRAF</td>
<td>International Center for Research in Agroforestry</td>
</tr>
<tr>
<td>ICRW</td>
<td>International Convention for the Regulation of Whaling</td>
</tr>
<tr>
<td>ICSU</td>
<td>International Council for Science</td>
</tr>
<tr>
<td>ICZM</td>
<td>integrated coastal zone management</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre (Canada)</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IEG</td>
<td>international environmental governance</td>
</tr>
<tr>
<td>IEK</td>
<td>indigenous ecological knowledge</td>
</tr>
<tr>
<td>IFPRI</td>
<td>International Food Policy Research Institute</td>
</tr>
<tr>
<td>IGBP</td>
<td>International Geosphere-Biosphere Program</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>IK</td>
<td>indigenous knowledge</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organization</td>
</tr>
<tr>
<td>IF</td>
<td>International Monetary Fund</td>
</tr>
<tr>
<td>IMPACT</td>
<td>International Model for Policy Analysis of Agricultural Commodities and Trade</td>
</tr>
<tr>
<td>IMR</td>
<td>infant mortality rate</td>
</tr>
<tr>
<td>INESI</td>
<td>International Network of Sustainability Initiatives (hypothetical, in Scenarios)</td>
</tr>
<tr>
<td>INTA</td>
<td>Instituto Nacional de Tecnología Agropecuaria (Argentina)</td>
</tr>
<tr>
<td>IPAT</td>
<td>impact of population, affluence, technology</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPM</td>
<td>integrated pest management</td>
</tr>
<tr>
<td>IPR</td>
<td>intellectual property rights</td>
</tr>
<tr>
<td>IRBM</td>
<td>integrated river basin management</td>
</tr>
<tr>
<td>ISEH</td>
<td>International Society for Ecosystem Health</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITTPGR</td>
<td>International Treaty on Plant Genetic Resources for Food and Agriculture</td>
</tr>
<tr>
<td>ITQs</td>
<td>individual transferable quotas</td>
</tr>
<tr>
<td>ITTO</td>
<td>International Tropical Timber Organization</td>
</tr>
<tr>
<td>IUCN</td>
<td>World Conservation Union</td>
</tr>
<tr>
<td>IUU</td>
<td>illegal, unregulated, and unreported (fishing)</td>
</tr>
<tr>
<td>IVM</td>
<td>integrated vector management</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>IWMI</td>
<td>International Water Management Institute</td>
</tr>
<tr>
<td>IWRM</td>
<td>integrated water resources management</td>
</tr>
<tr>
<td>JDSD</td>
<td>Johannesburg Declaration on Sustainable Development</td>
</tr>
<tr>
<td>JI</td>
<td>joint implementation</td>
</tr>
<tr>
<td>JMP</td>
<td>Joint Monitoring Program</td>
</tr>
<tr>
<td>LAC</td>
<td>Latin America and the Caribbean</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>LARD</td>
<td>livelihood approaches to rural development</td>
</tr>
<tr>
<td>LDC</td>
<td>least developed country</td>
</tr>
<tr>
<td>LEK</td>
<td>local ecological knowledge</td>
</tr>
<tr>
<td>LME</td>
<td>large marine ecosystems</td>
</tr>
<tr>
<td>LPI</td>
<td>Living Planet Index</td>
</tr>
<tr>
<td>LSMS</td>
<td>Living Standards Measurement Study</td>
</tr>
<tr>
<td>LULUCF</td>
<td>land use, land use change, and forestry</td>
</tr>
<tr>
<td>MA</td>
<td>Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>MAI</td>
<td>mean annual increments</td>
</tr>
<tr>
<td>MBI</td>
<td>market-based instruments</td>
</tr>
<tr>
<td>MCA</td>
<td>multicriteria analysis</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goal</td>
</tr>
<tr>
<td>MEA</td>
<td>multilateral environmental agreement</td>
</tr>
<tr>
<td>MENA</td>
<td>Middle East and North Africa</td>
</tr>
<tr>
<td>MER</td>
<td>market exchange rate</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MICS</td>
<td>multiple indicator cluster surveys</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MPA</td>
<td>marine protected area</td>
</tr>
<tr>
<td>MSVPA</td>
<td>multispecies virtual population analysis</td>
</tr>
<tr>
<td>NAP</td>
<td>National Action Program (of desertification convention)</td>
</tr>
<tr>
<td>NBP</td>
<td>net biome productivity</td>
</tr>
<tr>
<td>NCD</td>
<td>noncommunicable disease</td>
</tr>
<tr>
<td>NCS</td>
<td>National Conservation Strategy</td>
</tr>
<tr>
<td>NCSD</td>
<td>national council for sustainable development</td>
</tr>
<tr>
<td>NDVI</td>
<td>normalized difference vegetation index</td>
</tr>
<tr>
<td>NE</td>
<td>effective size of a population</td>
</tr>
<tr>
<td>NEAP</td>
<td>national environmental action plan</td>
</tr>
<tr>
<td>NEP</td>
<td>new ecological paradigm; also net ecosystem productivity</td>
</tr>
<tr>
<td>NEPAD</td>
<td>New Partnership for Africa’s Development</td>
</tr>
<tr>
<td>NFAP</td>
<td>National Forestry Action Plan</td>
</tr>
<tr>
<td>NFP</td>
<td>national forest programs</td>
</tr>
<tr>
<td>NGO</td>
<td>nongovernmental organization</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health (United States)</td>
</tr>
<tr>
<td>NMHC</td>
<td>non-methane hydrocarbons</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanographic and Atmospheric Administration (United States)</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary productivity</td>
</tr>
<tr>
<td>NSSD</td>
<td>national strategies for sustainable development</td>
</tr>
<tr>
<td>NUE</td>
<td>nitrogen use efficiency</td>
</tr>
<tr>
<td>NWFP</td>
<td>non-wood forest product</td>
</tr>
<tr>
<td>ODA</td>
<td>official development assistance</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OSB</td>
<td>oriented strand board</td>
</tr>
<tr>
<td>OWL</td>
<td>other wooded land</td>
</tr>
<tr>
<td>PA</td>
<td>protected area</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PCBs</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PEM</td>
<td>protein energy malnutrition</td>
</tr>
<tr>
<td>PES</td>
<td>payment for environmental (or ecosystem) services</td>
</tr>
<tr>
<td>PFT</td>
<td>plant functional type</td>
</tr>
<tr>
<td>PNG</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>POPs</td>
<td>persistent organic pollutants</td>
</tr>
<tr>
<td>PPA</td>
<td>participatory poverty assessment</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PPI</td>
<td>potential Pareto improvement</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ppmv</td>
<td>parts per million by volume</td>
</tr>
<tr>
<td>PPP</td>
<td>purchasing power parity; also public-private partnership</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>PQLI</td>
<td>Physical Quality of Life Index</td>
</tr>
<tr>
<td>PRA</td>
<td>participatory rural appraisal</td>
</tr>
<tr>
<td>PRSP</td>
<td>Poverty Reduction Strategy Paper</td>
</tr>
<tr>
<td>PSE</td>
<td>producer support estimate</td>
</tr>
<tr>
<td>PVA</td>
<td>population viability analysis</td>
</tr>
<tr>
<td>RANWA</td>
<td>Research and Action in Natural Wealth Administration</td>
</tr>
<tr>
<td>RBO</td>
<td>river basin organization</td>
</tr>
<tr>
<td>RIDES</td>
<td>Recursos e Investigación para el Desarrollo Sustentable (Chile)</td>
</tr>
<tr>
<td>RIL</td>
<td>reduced impact logging</td>
</tr>
<tr>
<td>RLI</td>
<td>Red List Index</td>
</tr>
<tr>
<td>RO</td>
<td>reverse osmosis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RRA</td>
<td>rapid rural appraisal</td>
</tr>
<tr>
<td>RUE</td>
<td>rain use efficiency</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SADCC</td>
<td>Southern African Development Coordination Conference</td>
</tr>
<tr>
<td>SaMA</td>
<td>Southern African Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>SAP</td>
<td>structural adjustment program</td>
</tr>
<tr>
<td>SAR</td>
<td>species-area relationship</td>
</tr>
<tr>
<td>SARS</td>
<td>severe acute respiratory syndrome</td>
</tr>
<tr>
<td>SBSTTA</td>
<td>Subsidiary Body on Scientific, Technical and Technological Advice (of CBD)</td>
</tr>
<tr>
<td>SEA</td>
<td>strategic environmental assessment</td>
</tr>
<tr>
<td>SEME</td>
<td>simple empirical models for eutrophication</td>
</tr>
<tr>
<td>SES</td>
<td>social-ecological system</td>
</tr>
<tr>
<td>SFM</td>
<td>sustainable forest management</td>
</tr>
<tr>
<td>SIDS</td>
<td>small island developing states</td>
</tr>
<tr>
<td>SMS</td>
<td>safe minimum standard</td>
</tr>
<tr>
<td>SOM</td>
<td>soil organic matter</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emissions Scenarios (of the IPCC)</td>
</tr>
<tr>
<td>SSC</td>
<td>Species Survival Commission (of IUCN)</td>
</tr>
<tr>
<td>SWAP</td>
<td>sector-wide approach</td>
</tr>
<tr>
<td>TAC</td>
<td>total allowable catch</td>
</tr>
<tr>
<td>TBT</td>
<td>tributyltin</td>
</tr>
<tr>
<td>TC</td>
<td>travel cost</td>
</tr>
<tr>
<td>TCM</td>
<td>travel cost method</td>
</tr>
<tr>
<td>TDR</td>
<td>tradable development rights</td>
</tr>
<tr>
<td>TDS</td>
<td>total dissolved solids</td>
</tr>
<tr>
<td>TEIA</td>
<td>transboundary environmental impact assessment</td>
</tr>
<tr>
<td>TEK</td>
<td>traditional ecological knowledge</td>
</tr>
<tr>
<td>TEM</td>
<td>terrestrial ecosystem model</td>
</tr>
<tr>
<td>TESEO</td>
<td>Treaty Enforcement Services Using Earth Observation</td>
</tr>
<tr>
<td>TEV</td>
<td>total economic value</td>
</tr>
<tr>
<td>TFAP</td>
<td>Tropical Forests Action Plan</td>
</tr>
<tr>
<td>TFP</td>
<td>total factor productivity</td>
</tr>
<tr>
<td>TFR</td>
<td>total fertility rate</td>
</tr>
<tr>
<td>Tg</td>
<td>teragram (10^{12} grams)</td>
</tr>
<tr>
<td>TK</td>
<td>traditional knowledge</td>
</tr>
<tr>
<td>TMDL</td>
<td>total maximum daily load</td>
</tr>
<tr>
<td>TOF</td>
<td>trees outside of forests</td>
</tr>
<tr>
<td>TRIPS</td>
<td>Trade-Related Aspects of Intellectual Property Rights</td>
</tr>
<tr>
<td>TSU</td>
<td>Technical Support Unit</td>
</tr>
<tr>
<td>TW</td>
<td>terawatt</td>
</tr>
<tr>
<td>UMD</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>UNCCD</td>
<td>United Nations Convention to Combat Desertification</td>
</tr>
<tr>
<td>UNCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UNIDO</td>
<td>United Nations Industrial Development Organization</td>
</tr>
<tr>
<td>UNRO</td>
<td>United Nations Regional Organization (hypothetical body, in Scenarios)</td>
</tr>
<tr>
<td>UNSO</td>
<td>UNDP’s Office to Combat Desertification and Drought</td>
</tr>
<tr>
<td>USAID</td>
<td>U.S. Agency for International Development</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>VW</td>
<td>virtual water</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WCD</td>
<td>World Commission on Dams</td>
</tr>
<tr>
<td>WCED</td>
<td>World Commission on Environment and Development</td>
</tr>
<tr>
<td>WCMC</td>
<td>World Conservation Monitoring Centre (of UNEP)</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WIPO</td>
<td>World Intellectual Property Organization</td>
</tr>
<tr>
<td>WISP</td>
<td>weighted index of social progress</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WPI</td>
<td>Water Poverty Index</td>
</tr>
<tr>
<td>WRF</td>
<td>white rot fungi</td>
</tr>
<tr>
<td>WSSD</td>
<td>World Summit on Sustainable Development</td>
</tr>
<tr>
<td>wta</td>
<td>withdrawals-to-availability ratio (of water)</td>
</tr>
<tr>
<td>WTA</td>
<td>willingness to accept compensation</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
<tr>
<td>WTP</td>
<td>willingness to pay</td>
</tr>
<tr>
<td>WWAP</td>
<td>World Water Assessment Programme</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wide Fund for Nature</td>
</tr>
<tr>
<td>WWV</td>
<td>World Water Vision</td>
</tr>
</tbody>
</table>
Abatement cost: See Marginal abatement cost.

Abundance: The total number of individuals of a taxon or taxa in an area, population, or community. Relative abundance refers to the total number of individuals of one taxon compared with the total number of individuals of all other taxa in an area, volume, or community.

Active adaptive management: See Adaptive management.

Adaptation: Adjustment in natural or human systems to a new or changing environment. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation.

Adaptive capacity: The general ability of institutions, systems, and individuals to adjust to potential damage, to take advantage of opportunities, or to cope with the consequences.

Adaptive management: A systematic process for continually improving management policies and practices by learning from the outcomes of previously employed policies and practices. In active adaptive management, management is treated as a deliberate experiment for purposes of learning.

Afforestation: Planting of forests on land that has historically not contained forests. (Compare Reforestation.)

Agrobiodiversity: The diversity of plants, insects, and soil biota found in cultivated systems.

Agroforestry systems: Mixed systems of crops and trees providing wood, non-wood forest products, food, fuel, fodder, and shelter.

Albedo: A measure of the degree to which a surface or object reflects solar radiation.

Alien species: Species introduced outside its normal distribution.

Alien invasive species: See Invasive alien species.

Aquaculture: Breeding and rearing of fish, shellfish, or plants in ponds, enclosures, or other forms of confinement in fresh or marine waters for the direct harvest of the product.

Benefits transfer approach: Economic valuation approach in which estimates obtained (by whatever method) in one context are used to estimate values in a different context.

Binding constraints: Political, social, economic, institutional, or ecological factors that rule out a particular response.

Biodiversity (a contraction of biological diversity): The variability among living organisms from all sources, including terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part. Biodiversity includes diversity within species, between species, and between ecosystems.

Biodiversity regulation: The regulation of ecosystem processes and services by the different components of biodiversity.

Biogeographic realm: A large spatial region, within which ecosystems share a broadly similar biota. Eight terrestrial biogeographic realms are typically recognized, corresponding roughly to continents (e.g., Afrotropical realm).

Biological diversity: See Biodiversity.

Biomass: The mass of tissues in living organisms in a population, ecosystem, or spatial unit.

Biome: The largest unit of ecological classification that is convenient to recognize below the entire globe. Terrestrial biomes are typically based on dominant vegetation structure (e.g., forest, grassland). Ecosystems within a biome function in a broadly similar way, although they may have very different species composition. For example, all forests share certain properties regarding nutrient cycling, disturbance, and biomass that are different from the properties of grasslands. Marine biomes are typically based on biogeochemical properties. The WWF biome classification is used in the MA.

Bioprospecting: The exploration of biodiversity for genetic and biochemical resources of social or commercial value.

Biotechnology: Any technological application that uses biological systems, living organisms, or derivatives thereof to make or modify products or processes for specific use.

Biotic homogenization: Process by which the differences between biotic communities in different areas are on average reduced.

Blueprint approaches: Approaches that are designed to be applicable in a wider set of circumstances and that are not context-specific or sensitive to local conditions.

Boundary organizations: Public or private organizations that synthesize and translate scientific research and explore its policy implications to help bridge the gap between science and decision-making.

Bridging organizations: Organizations that facilitate, and offer an arena for, stakeholder collaboration, trust-building, and conflict resolution.

Capability: The combinations of doings and beings from which people can choose to lead the kind of life they value. Basic capability is the capability to meet a basic need.

Capacity building: A process of strengthening or developing human resources, institutions, organizations, or networks. Also referred to as capacity development or capacity enhancement.

Capital value (of an ecosystem): The present value of the stream of ecosystem services that an ecosystem will generate under a particular management or institutional regime.

Capture fisheries: See Fishery.

Carbon sequestration: The process of increasing the carbon content of a reservoir other than the atmosphere.

Cascading interaction: See Trophic cascade.

Catch: The number or weight of all fish caught by fishing operations, whether the fish are landed or not.

Coastal system: Systems containing terrestrial areas dominated by ocean influences of tides and marine aerosols, plus nearshore marine areas. The inland extent of coastal ecosystems is the line where land-based influences dominate, up to a maximum of 100 kilometers from the coastline or 100-meter elevation (whichever is closer to the sea), and the outward extent is the 50-meter-depth contour. See also System.

Collaborative (or joint) forest management: Community-based management of forests, where resource tenure by local communities is secured.

Common pool resource: A valued natural or human-made resource or facility in which one person’s use subtracts from another’s use and where it is often necessary but difficult to exclude potential users from the resource. (Compare Common property resource.)

Common property management system: The institutions (i.e., sets of rules) that define and regulate the use rights for common pool resources. Not the same as an open access system.

Common property resource: A good or service shared by a well-defined community. (Compare Common pool resource.)
Community (ecological): An assemblage of species occurring in the same space or time, often linked by biotic interactions such as competition or predation.

Community (human, local): A collection of human beings who have something in common. A local community is a fairly small group of people who share a common place of residence and a set of institutions based on this fact, but the word ‘community’ is also used to refer to larger collections of people who have something else in common (e.g., national community, donor community).

Condition of an ecosystem: The capacity of an ecosystem to yield services, relative to its potential capacity.

Condition of an ecosystem service: The capacity of an ecosystem service to yield benefits to people, relative to its potential capacity.

Constituents of well-being: The experiential aspects of well-being, such as health, happiness, and freedom to be and do, and, more broadly, basic liberties.

Consumptive use: The reduction in the quantity or quality of a good available for other users due to consumption.

Contingent valuation: Economic valuation technique based on a survey of how much respondents would be willing to pay for specified benefits.

Core dataset: Data sets designated to have wide potential application throughout the Millennium Ecosystem Assessment process. They include land use, land cover, climate, and population data sets.

Cost-benefit analysis: A technique designed to determine the feasibility of a project or plan by quantifying its costs and benefits.

Cost-effectiveness analysis: Analysis to identify the least cost option that meets a particular goal.

 Critically endangered species: Species that face an extremely high risk of extinction in the wild. See also Threatened species.

Cross-scale feedback: A process in which effects of some action are transmitted from a smaller spatial extent to a larger one, or vice versa. For example, a global policy may constrain the flexibility of a local region to use certain response options to environmental change, or a local agricultural pest outbreak may affect regional food supply.

Cultivar (a contraction of cultivated variety): A variety of a plant developed from a natural species and maintained under cultivation.

Cultivated system: Areas of landscape or seascape actively managed for the production of food, feed, fiber, or biofuels.

Cultural landscape: See Landscape.

Cultural services: The nonmaterial benefits people obtain from ecosystems through spiritual enrichment, cognitive development, reflection, recreation, and aesthetic experience, including, e.g., knowledge systems, social relations, and aesthetic values.

Decision analytical framework: A coherent set of concepts and procedures aimed at synthesizing available information to help policymakers assess consequences of various decision options. DAFs organize the relevant information in a suitable framework, apply decision criteria (both based on some paradigms or theories), and thus identify options that are better than others under the assumptions characterizing the analytical framework and the application at hand.

Decision-maker: A person whose decisions, and the actions that follow from them, can influence a condition, process, or issue under consideration.

 Decomposition: The ecological process carried out primarily by microbes that leads to a transformation of dead organic matter into inorganic matter.

Deforestation: Conversion of forest to non-forest.

Degradation of an ecosystem service: For provisioning services, decreased production of the service through changes in area over which the services is provided, or decreased production per unit area. For regulating and supporting services, a reduction in the benefits obtained from the service, either through a change in the service or through human pressures on the service exceeding its limits. For cultural services, a change in the ecosystem features that decreases the cultural benefits provided by the ecosystem.

Degradation of ecosystems: A persistent reduction in the capacity to provide ecosystem services.
Ecosystem resilience: The size, biodiversity, stability, degree of or-
Ecosystem process: Exchanges of materials, energy, and infor-
Ecosystem management: An approach to maintaining or restoring
Ecosystem process: An intrinsic ecosystem characteristic whereby an
Ecosystem properties: The size, biodiversity, stability, degree of or-
Ecosystem resilience: See Resilience.
Ecosystem resistance: See Resistance.
Ecosystem robustness: See Ecosystem stability.
Ecosystem services: The benefits people obtain from ecosystems.
These include provisioning services such as food and water; regulating
Ecosystem stability (or ecosystem robustness): A description of the
dynamic properties of an ecosystem. An ecosystem is considered sta-
stable or robust if it returns to its original state after a perturbation,
exhibits low temporal variability, or does not change dramatically in
the face of a perturbation.
Elasticity: A measure of responsiveness of one variable to a change in
another, usually defined in terms of percentage change. For exam-
ple, own-price elasticity of demand is the percentage change in the
quantity demanded of a good for a 1% change in the price of that
Good. Other common elasticity measures include supply and income
elasticity.
Emergent disease: Diseases that have recently increased in incidence,
impact, or geographic range; that are caused by pathogens that have
recently evolved; that are newly discovered; or that have recently
changed their clinical presentation.
Emergent property: A phenomenon that is not evident in the constit-
uent parts of a system but that appears when they interact in the
system as a whole.
Enabling conditions: Critical preconditions for success of responses,
including political, institutional, social, economic, and ecological
factors.
Endangered species: Species that face a very high risk of extinction
in the wild. See also Threatened species.
Endemic (in ecology): A species or higher taxonomic unit found
only within a specific area.
Endemic (in health): The constant presence of a disease or infectious
agent within a given geographic area or population group; may also
refer to the usual prevalence of a given disease within such area or
group.
Endemism: The fraction of species that is endemic relative to the total
number of species found in a specific area.
Epistemology: The theory of knowledge, or a “way of knowing.”
Equity: Fairness of rights, distribution, and access. Depending on con-
text, this can refer to resources, services, or power.
Eutrophication: The increase in additions of nutrients to freshwater
or marine systems, which leads to increases in plant growth and
often to undesirable changes in ecosystem structure and function.
Evapotranspiration: See Transpiration.
Existence value: The value that individuals place on knowing that a
resource exists, even if they never use that resource (also sometimes
known as conservation value or passive use value).
Exotic species: See Alien species.
Externality: A consequence of an action that affects someone other
than the agent undertaking that action and for which the agent is
neither compensated nor penalized through the markets. Externali-
ties can be positive or negative.
Feedback: See Negative feedback, Positive feedback, and Cross-scale feed-
back.
Fishery: A particular kind of fishing activity, e.g., a trawl fishery, or a
particular species targeted, e.g., a cod fishery or salmon fishery.
Fish stock: See Stock.
Fixed nitrogen: See Reactive nitrogen.
Flyway: Areas of the world used by migratory birds in moving be-
tween breeding and wintering grounds.
Forest systems: Systems in which trees are the predominant life forms.
Statistics reported in this assessment are based on areas that are domi-
nated by trees (perennial woody plants taller than five meters at ma-
turity), where the tree crown cover exceeds 10%, and where the
area is more than 0.5 hectares. “Open forests” have a canopy cover be-
tween 10% and 40%, and “closed forests” a canopy cover of more
than 40%.” Fragmented forests” refer to mosaics of forest patches and
non-forest land. See also System.
Freedom: The range of options a person has in deciding the kind of
life to lead.
Functional diversity: The value, range, and relative abundance of
traits present in the organisms in an ecological community.
Functional redundancy (= functional compensation): A characteris-
tic of ecosystems in which more than one species in the system can
carry out a particular process. Redundancy may be total or partial—
that is, a species may not be able to completely replace the other
species or it may compensate only some of the processes in which
the other species are involved.
Functional types (= functional groups = guilds): Groups of organ-
sms that respond to the environment or affect ecosystem processes
in a similar way. Examples of plant functional types include nitro-
gen-fixers versus non-nitrogen-fixers, stress-tolerant versus ruder versus
competitor, resprouter versus seeder, deciduous versus evergreen.
Examples of animal functional types include granivorous versus
fleshy-fruit eater, nocturnal versus diurnal predator, browser versus
grazer.
Geographic information system: A computerized system organizing
data sets through a geographical referencing of all data included in
its collections.
Globalization: The increasing integration of economies and societies
around the world, particularly through trade and financial flows, and
the transfer of culture and technology.
Global scale: The geographical realm encompassing all of Earth.
Governance: The process of regulating human behavior in accordance
with shared objectives. The term includes both governmental and
nongovernmental mechanisms.
Health, human: A state of complete physical, mental, and social well-
being and not merely the absence of disease or infirmity. The health
of a whole community or population is reflected in measurements of
disease incidence and prevalence, age-specific death rates, and life
expectancy.
High seas: The area outside of national jurisdiction, i.e., beyond each
nation’s Exclusive Economic Zone or other territorial waters.
Human well-being: See Well-being.
Income poverty: See Poverty.
Indicator: Information based on measured data used to represent a
particular attribute, characteristic, or property of a system.
Indigenous knowledge (or local knowledge): The knowledge that is
unique to a given culture or society.
Indirect interaction: Those interactions among species in which a
species, through direct interaction with another species or modifi-
cation of resources, alters the abundance of a third species with
which it is not directly interacting. Indirect interactions can be tro-
phic or non trophic in nature.
Indirect use value: The benefits derived from the goods and services provided by an ecosystem that are used indirectly by an economic agent. For example, an agent at some distance from an ecosystem may derive benefits from drinking water that has been purified as it passed through the ecosystem. (Compare Direct use value.)

Infant mortality rate: Number of deaths of infants aged 0–12 months divided by the number of live births.

Inland water systems: Permanent water bodies other than salt-water systems on the coast, seas and oceans. Includes rivers, lakes, reservoirs wetlands and inland saline lakes and marshes. See also System.

Institutions: The rules that guide how people within societies live, work, and interact with each other. Formal institutions are written or codified rules. Examples of formal institutions would be the constitution, the judiciary laws, the organized market, and property rights. Informal institutions are rules governed by social and behavioral norms of the society, family, or community. Also referred to as organizations.

Integrated coastal zone management: Approaches that integrate economic, social, and ecological perspectives for the management of coastal resources and areas.

Integrated conservation and development projects: Initiatives that aim to link biodiversity conservation and development.

Integrated pest management: Any practices that attempt to capitalize on natural processes that reduce pest abundance. Sometimes used to refer to monitoring programs where farmers apply pesticides to improve economic efficiency (reducing application rates and improving profitability).

Integrated response systems: Responses that address degradation of ecosystem services across a number of systems simultaneously or that also explicitly include objectives to enhance human well-being.

Integrated river basin management: Integration of water planning and management with environmental, social, and economic development concerns, with an explicit objective of improving human welfare.

Interventions: See Responses.

Intrinsic value: The value of someone or something in and for itself, irrespective of its utility for people.

Invisibility: Intrinsic susceptibility of an ecosystem to be invaded by an alien species.

Invasive alien species: An alien species whose establishment and spread modifies ecosystems, habitats, or species.

Irreversibility: The quality of being impossible or difficult to return to, or to restore to, a former condition. See also Option value, Precautionary principle, Resilience, and Threshold.

Island systems: Lands isolated by surrounding water, with a high proportion of coast to hinterland. The degree of isolation from the mainland in both natural and social aspects is accounted by the isola effect. See also System.

Isola effect: Environmental issues that are unique to island systems. This uniqueness takes into account the physical seclusion of islands as isolated pieces of land exposed to marine or climatic disturbances with a more limited access to space, products, and services when compared with most continental areas, but also includes subjective issues such as the perceptions and attitudes of islanders themselves.

Keystone species: A species whose impact on the community is disproportionately large relative to its abundance. Effects can be produced by consumption (trophic interactions), competition, mutualism, dispersal, pollination, disease, or habitat modification (nontrophic interactions).

Land use: The human use of a piece of land for a certain purpose (such as irrigated agriculture or recreation). Influenced by, but not synonymous with, land cover.

Length of growing period: The total number of days in a year during which rainfall exceeds one half of potential evapotranspiration. For boreal and temperate zone, growing season is usually defined as a number of days with the average daily temperature that exceeds a definite threshold, such as 10° Celsius.

Local knowledge: See Indigenous knowledge.

Mainstreaming: Incorporating a specific concern, e.g. sustainable use of ecosystems, into policies and actions.

Malnutrition: A state of bad nourishment. Malnutrition refers both to undernutrition and overnutrition, as well as to conditions arising from dietary imbalances leading to diet-related noncommunicable diseases.

Marginal abatement cost: The cost of abating an incremental unit of, for instance, a pollutant.

Marine system: Marine waters from the low-water mark to the high seas that support marine capture fisheries, as well as deepwater (>50 meters) habitats. Four sub-divisions (marine biomes) are recognized: the coastal boundary zone; trade-winds; westerlies; and polar.

Market-based instruments: Mechanisms that create a market for ecosystem services in order to improving the efficiency in the way the service is used. The term is used for mechanisms that create new markets, but also for responses such as taxes, subsidies, or regulations that affect existing markets.

Market failure: The inability of a market to capture the correct values of ecosystem services.

Mitigation: An anthropogenic intervention to reduce negative or unsustainable uses of ecosystems or to enhance sustainable practices.

Mountain system: High-altitude (greater than 2,500 meters) areas and steep mid-altitude (1,000 meters at the equator, decreasing to sea level where alpine life zones meet polar life zones at high latitudes) areas, excluding large plateaus.

Negative feedback: Feedback that has a net effect of dampening perturbation.

Net primary productivity: See Production, biological.

Non-linearity: A relationship or process in which a small change in the value of a driver (i.e., an independent variable) produces an disproportionate change in the outcome (i.e., the dependent variable). Relationships where there is a sudden discontinuity or change in rate are sometimes referred to as abrupt and often form the basis of thresholds. In loose terms, they may lead to unexpected outcomes or “surprises.”

Nutrient cycling: The processes by which elements are extracted from their mineral, aquatic, or atmospheric sources or recycled from their organic forms, converting them to the ionic form in which biotic uptake occurs and ultimately returning them to the atmosphere, water, or soil.

Nutrients: The approximately 20 chemical elements known to be essential for the growth of living organisms, including nitrogen, sulfur, phosphorus, and carbon.

Open access resource: A good or service over which no property rights are recognized.

Opportunity cost: The benefits forgone by undertaking one activity instead of another.

Option value: The value of preserving the option to use services in the future either by oneself (option value) or by others or heirs (bequest value). Quasi-option value represents the value of avoiding irreversible decisions until new information reveals whether certain ecosystem services have values society is not currently aware of.

Organic farming: Crop and livestock production systems that do not make use of synthetic fertilizers, pesticides, or herbicides. May also include restrictions on the use of transgenic crops (genetically modified organisms).

Pastoralism, pastoral system: The use of domestic animals as a primary means for obtaining resources from habitats.

Perturbation: An imposed movement of a system away from its current state.
Polar system: Treeless lands at high latitudes. Includes Arctic and Antarctic areas, where the polar system merges with the northern boreal forest and the Southern Ocean respectively. See also System.

Policy failure: A situation in which government policies create inefficiencies in the use of goods and services.

Policy-maker: A person with power to influence or determine policies and practices at an international, national, regional, or local level.

Pollination: A process in the sexual phase of reproduction in some plants caused by the transportation of pollen. In the context of ecosystem services, pollination generally refers to animal-assisted pollination, such as that done by bees, rather than wind pollination.

Population, biological: A group of individuals of the same species, occupying a defined area, and usually isolated to some degree from other similar groups. Populations can be relatively reproductively isolated and adapted to local environments.

Population, human: A collection of living people in a given area. (Compare Community (human, local).)

Positive feedback: Feedback that has a net effect of amplifying perturbation.

Poverty: The pronounced deprivation of well-being. Income poverty refers to a particular formulation expressed solely in terms of per capita or household income.

Precautionary principle: The management concept stating that in cases “where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation,” as defined in the Rio Declaration.

Prediction (or forecast): The result of an attempt to produce a most likely description or estimate of the actual evolution of a variable or system in the future. See also Projection and Scenario.

Primary production: See Production, biological.

Private costs and benefits: Costs and benefits directly felt by individual economic agents or groups as seen from their perspective. (Externalities imposed on others are ignored.) Costs and benefits are valued at the prices actually paid or received by the group, even if these prices are highly distorted. Sometimes termed “financial” costs and benefits. (Compare Social costs and benefits.)

Probability distribution: A distribution that shows all the values that a random variable can take and the likelihood that each will occur.

Production, biological: Rate of biomass produced by an ecosystem, generally expressed as biomass produced per unit of time per unit of surface or volume. Net primary productivity is defined as the energy fixed by plants minus their respiration.

Production, economic: Output of a system.

Productivity, biological: See Production, biological.

Productivity, economic: Capacity of a system to produce high levels of output or responsiveness of the output of a system to inputs.

Projection (or forecast): A potential future evolution of a quantity or set of quantities, often computed with the aid of a model. Projections are distinguished from “predictions” in order to emphasize that projections involve assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realized; they are therefore subject to substantial uncertainty.

Property rights: The right to specific uses, perhaps including exchange in a market, of ecosystems and their services.

Provisioning services: The products obtained from ecosystems, including, for example, genetic resources, food and fiber, and fresh water.

Public good: A good or service in which the benefit received by any one party does not diminish the availability of the benefits to others, and where access to the good cannot be restricted.

Reactive nitrogen (or fixed nitrogen): The forms of nitrogen that are generally available to organisms, such as ammonia, nitrate, and organic nitrogen. Nitrogen gas (or dinitrogen), which is the major component of the atmosphere, is inert to most organisms.

Realm: Used to describe the three major types of ecosystems on earth: terrestrial, freshwater, and marine. Differs fundamentally from biogeographic realm.

Reforestation: Planting of forests on lands that have previously contained forest but have since been converted to some other use. (Compare Afforestation.)

Regime shift: A rapid reorganization of an ecosystem from one relatively stable state to another.

Regulating services: The benefits obtained from the regulation of ecosystem processes, including, for example, the regulation of climate, water, and some human diseases.

Relative abundance: See Abundance.

Reporting unit: The spatial or temporal unit at which assessment or analysis findings are reported. In an assessment, these units are chosen to maximize policy relevance or relevance to the public and thus may differ from those upon which the analyses were conducted (e.g., analyses conducted on mapped ecosystems can be reported on administrative units). See also System.

Resilience: The level of disturbance that an ecosystem can undergo without crossing a threshold to a situation with different structure or outputs. Resilience depends on ecological dynamics as well as the organizational and institutional capacity to understand, manage, and respond to these dynamics.

Resistance: The capacity of an ecosystem to withstand the impacts of drivers without displacement from its present state.

Responses: Human actions, including policies, strategies, and interventions, to address specific issues, needs, opportunities, or problems. In the context of ecosystem management, responses may be of legal, technical, institutional, economic, and behavioral nature and may operate at various spatial and time scales.

Riparian: Something related to, living on, or located at the banks of a watercourse, usually a river or stream.

Safe minimum standard: A decision analytical framework in which the benefits of ecosystem services are assumed to be calculable and should be preserved unless the costs of doing so rise to an intolerable level, thus shifting the burden of proof to those who would convert them.

Salinization: The buildup of salts in soils.

Scale: The measurable dimensions of phenomena or observations. Expressed in physical units, such as meters, years, population size, or quantities moved or exchanged. In observation, scale determines the relative fineness and coarseness of different detail and the selectivity among patterns these data may form.

Scenario: A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about key driving forces (e.g., rate of technology change, prices) and relationships. Scenarios are neither predictions nor projections and sometimes may be based on a “narrative storyline.” Scenarios may include projections but are often based on additional information from other sources.

Security: Access to resources, safety, and the ability to live in a predictable and controllable environment.

Service: See Ecosystem services.

Social costs and benefits: Costs and benefits as seen from the perspective of society as a whole. These differ from private costs and benefits in being more inclusive (all costs and benefits borne by some member of society are taken into account) and in being valued at social opportunity cost rather than market prices, where these differ. Sometimes termed “economic” costs and benefits. (Compare Private costs and benefits.)

Social incentives: Measures that lower transaction costs by facilitating trust-building and learning as well as rewarding collaboration and conflict resolution. Social incentives are often provided by bridging organizations.

Socioecological system: An ecosystem, the management of this ecosystem by actors and organizations, and the rules, social norms, and conventions underlying this management. (Compare System.)

Soft law: Non-legally binding instruments, such as guidelines, standards, criteria, codes of practice, resolutions, and principles or declarations, that states establish to implement national laws.

Soil fertility: The potential of the soil to supply nutrient elements in the quantity, form, and proportion required to support optimum plant growth. See also Nutrients.
Speciation: The formation of new species.
Species: An interbreeding group of organisms that is reproductively isolated from all other organisms, although there are many partial exceptions to this rule in particular taxa. Operationally, the term species is a generally agreed fundamental taxonomic unit, based on morphological or genetic similarity, that once described and accepted is associated with a unique scientific name.
Species diversity: Biodiversity at the species level, often combining aspects of species richness, their relative abundance, and their dissimilarity.
Species richness: The number of species within a given sample, community, or area.
Statistical variation: Variability in data due to error in measurement, error in sampling, or variation in the measured quantity itself.
Stock (in fisheries): The population or biomass of a fishery resource. Such stocks are usually identified by their location. They can be, but are not always, genetically discrete from other stocks.
Stoichiometry, ecological: The relatively constant proportions of the different nutrients in plant or animal biomass that set constraints on production. Nutrients only available in lower proportions are likely to limit growth.
Storyline: A narrative description of a scenario, which highlights its main features and the relationships between the scenario’s driving forces and its main features.
Strategies: See Responses.
Streamflow: The quantity of water flowing in a watercourse.
Subsidiarity, principle of: The notion of devolving decision-making authority to the lowest appropriate level.
Subsidy: Transfer of resources to an entity, which either reduces the operating costs or increases the revenues of such entity for the purpose of achieving some objective.
Subsistence: An activity in which the output is mostly for the use of the individual person doing it, or their family, and which is a significant component of their livelihood.
Subspecies: A population that is distinct from, and partially reproductively isolated from, other populations of a species but that has not yet diverged sufficiently that interbreeding is impossible.
Supporting services: Ecosystem services that are necessary for the production of all other ecosystem services. Some examples include biomass production, production of atmospheric oxygen, soil formation and retention, nutrient cycling, water cycling, and provisioning of habitat.
Sustainability: A characteristic or state whereby the needs of the present and local population can be met without compromising the ability of future generations or populations in other locations to meet their needs.
Sustainable use (of an ecosystem): Human use of an ecosystem so that it may yield a continuous benefit to present generations while maintaining its potential to meet the needs and aspirations of future generations.
Symbiosis: Close and usually obligatory relationship between two organisms of different species, not necessarily to their mutual benefit.
Synergy: When the combined effect of several forces operating is greater than the sum of the separate effects of the forces.
System: In the Millennium Ecosystem Assessment, reporting units that are ecosystem-based but at a level of aggregation far higher than that usually applied to ecosystems. Thus the system includes many component ecosystems, some of which may not strongly interact with each other, that may be spatially separate, or that may be of a different type to the ecosystems that constitute the majority, or matrix, of the system overall. The system includes the social and economic systems that have an impact on and are affected by the ecosystems included within it. For example, the Condition and Trend Working Group refers to “forest systems,” “cultivated systems,” “mountain systems,” and so on. Systems thus defined are not mutually exclusive, and are permitted to overlap spatially or conceptually. For instance, the “cultivated system” may include areas of “dryland system” and vice versa.
Taxon (pl. taxa): The named classification unit to which individuals or sets of species are assigned. Higher taxa are those above the species level. For example, the common mouse, Mus musculus, belongs to the Genus Mus, the Family Muridae, and the Class Mammalia.
Taxonomy: A system of nested categories (taxa) reflecting evolutionary or morphological similarity.
Tenure: See Property rights, although also sometimes used more specifically in reference to the temporal dimensions and security of property rights.
Threatened species: Species that face a high (vulnerable species), very high (endangered species), or extremely high (critically endangered species) risk of extinction in the wild.
Threshold: A point or level at which new properties emerge in an ecological, economic, or other system, invalidating predictions based on mathematical relationships that apply at lower levels. For example, species diversity of a landscape may decline steadily with increasing habitat degradation to a certain point, then fall sharply after a critical threshold of degradation is reached. Human behavior, especially at group levels, sometimes exhibits threshold effects. Thresholds at which irreversible changes occur are especially of concern to decision-makers. (Compare Non-linearity.)
Time series data: A set of data that expresses a particular variable measured over time.
Total economic value framework: A widely used framework to disaggregate the components of utilitarian value, including direct use value, indirect use value, option value, quasi-option value, and existence value.
Total factor productivity: A measure of the aggregate increase in efficiency of use of inputs. TFP is the ratio of the quantity of output divided by an index of the amount of inputs used. A common input index uses as weights the share of the input in the total cost of production.
Total fertility rate: The number of children a woman would give birth to if through her lifetime she experienced the set of age-specific fertility rates currently observed. Since age-specific rates generally change over time, TFR does not in general give the actual number of births a woman alive today can be expected to have. Rather, it is a synthetic index meant to measure age-specific birth rates in a given year.
Trade-off: Management choices that intentionally or otherwise change the type, magnitude, and relative mix of services provided by ecosystems.
Traditional ecological knowledge: The cumulative body of knowledge, practices, and beliefs evolved by adaptive processes and handed down through generations. TEK may or may not be indigenous or local, but it is distinguished by the way in which it is acquired and used, through the social process of learning and sharing knowledge. (Compare Indigenous knowledge.)
Traditional knowledge: See Traditional ecological knowledge.
Traditional use: Exploitation of natural resources by indigenous users or by nonindigenous residents using traditional methods. Local use refers to exploitation by local residents.
Transpiration: The process by which water is drawn through plants and returned to the air as water vapor. Evapotranspiration is combined loss of water to the atmosphere via the processes of evaporation and transpiration.
Travel cost methods: Economic valuation techniques that use observed costs to travel to a destination to derive demand functions for that destination.
Trend: A pattern of change over time, over and above short-term fluctuations.
Trophic cascade: A chain reaction of top-down interactions across multiple trophic levels. These occur when changes in the presence or absence (or shifts in abundance) of a top predator alter the production at several lower trophic levels. Such positive indirect effects of top predators on lower trophic levels are mediated by the consumption of mid-level consumers (generally herbivores).
Trophic level: The average level of an organism within a food web, with plants having a trophic level of 1, herbivores 2, first-order carnivores 3, and so on.
Umbrella species: Species that have either large habitat needs or other requirements whose conservation results in many other species being conserved at the ecosystem or landscape level.
Uncertainty: An expression of the degree to which a future condition (e.g., of an ecosystem) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined terminology or uncertain projections of human behavior. Uncertainty can therefore be represented by quantitative measures (e.g., a range of values calculated by various models) or by qualitative statements (e.g., reflecting the judgment of a team of experts).

Urbanization: An increase in the proportion of the population living in urban areas.

Urban systems: Built environments with a high human population density. Operationally defined as human settlements with a minimum population density commonly in the range of 400 to 1,000 persons per square kilometer, minimum size of typically between 1,000 and 5,000 people, and maximum agricultural employment usually in the vicinity of 50–75%. See also System.

Utility: In economics, the measure of the degree of satisfaction or happiness of a person.

Valuation: The process of expressing a value for a particular good or service in a certain context (e.g., of decision-making) usually in terms of something that can be counted, often money, but also through methods and measures from other disciplines (sociology, ecology, and so on). See also Value.

Value: The contribution of an action or object to user-specified goals, objectives, or conditions. (Compare Valuation.)

Value systems: Norms and precepts that guide human judgment and action.

Voluntary measures: Measures that are adopted by firms or other actors in the absence of government mandates.

Vulnerability: Exposure to contingencies and stress, and the difficulty in coping with them. Three major dimensions of vulnerability are involved: exposure to stresses, perturbations, and shocks; the sensitivity of people, places, ecosystems, and species to the stress or perturbation, including their capacity to anticipate and cope with the stress; and the resilience of the exposed people, places, ecosystems, and species in terms of their capacity to absorb shocks and perturbations while maintaining function.

Vulnerable species: Species that face a high risk of extinction in the wild. See also Threatened species.

Water scarcity: A water supply that limits food production, human health, and economic development. Severe scarcity is taken to be equivalent to 1,000 cubic meters per year per person or greater than 40% use relative to supply.

Watershed (also catchment basin): The land area that drains into a particular watercourse or body of water. Sometimes used to describe the dividing line of high ground between two catchment basins.

Water stress: See Water scarcity.

Well-being: A context- and situation-dependent state, comprising basic material for a good life, freedom and choice, health and bodily well-being, good social relations, security, peace of mind, and spiritual experience.

Wetlands: Areas of marsh, fen, peatland, or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters. May incorporate riparian and coastal zones adjacent to the wetlands and islands or bodies of marine water deeper than six meters at low tide laying within the wetlands.

Wise use (of an ecosystem): Sustainable utilization for the benefit of humankind in a way compatible with the maintenance of the natural properties of the ecosystem.
Index

Italic page numbers refer to Figures, Tables, and Boxes. Bold page numbers refer to the Summary.

A
Aarhus Protocol on Persistent Organic Pollutants, 421, 432
Aboriginal rights, 499, 734
Acid rain, 375
Adaptive management strategies, 474
Advertising of food and changing food preferences, 225–226
Aerosols, 363–364, 369–371
Aesthetic services, 467–469, 468, 633, 737–738
Afforestation. See also Forests, defined, 597
drylands and, 642
Afghanistan, drought in, 577
Africa. See also Southern Africa; specific countries
bushmeat hunting and disease emergence in, 407
cholera epidemics in, 405
drylands in, 647, 654
endangered species in, 563
fires in, 447, 448, 449
fish consumption in, 558
fish imports and exports from, 496
floods in, 447–448
Lake Chad’s ecosystem services, 555, 556, 872
Lake Victoria and eutrophication, 345
lymphatic filariasis in, 404
malaria in, 402
meningitis in, 401
Mount Kenya and water catchment, 698
nomadic lifestyle and infectious diseases in, 409
nutrient balance in, 335
onchocerciasis (river blindness) in, 403
Rift Valley Fever in, 401–402
Sahel-Sahara regions, 373–374, 374, 528, 565, 630, 647, 656
tsetse flies in, 400
urbanization in, 804
virtual water in, 187, 853
yellow fever in, 403
African acacia, 635
African Model Law for the Protection of the Rights of Local Communities, Farmers and Breeders and for the Regulation of Access to Biological Resources, 290
African Programme for Onchocerciasis Control, 403
African sleeping sickness (trypanosomiasis), 400
Agriculture, 745–794
agricultural plantations, 248–249
agroforestry, 779–780
air quality and, 382, 382
background, 749
biodiversity and, 756–761, 757
integrated pest management and low-till cultivation systems, 318
monetary value on high-biodiversity landscapes, 320
multifunctionality of agricultural systems, 319
natural enemies of crop predators, parasites, and pathogens, 318
plant biodiversity and improved pest and disease control, 317–318
biophysical impacts of, 374
carbon dioxide and, 366, 768, 778, 779
carbon sequestration and, 778
confined livestock systems, 752
conservation of biodiversity in agricultural landscapes, 759–760
constraints and opportunities for improved interventions and outcomes, 780–781
cropping systems, 753, 754
crops, 214–216, 215
biofortification, 323
biological control and crop protection, 279, 280, 856
biophysical impacts of, 374
biophysical impacts of, 374
cincinnati and, 771
chronic diseases and, 784–785
demand for cultivated products, 770–771
dryland systems and

Agriculture, 745–794
agricultural plantations, 248–249
agroforestry, 779–780
air quality and, 382, 382
background, 749
biodiversity and, 756–761, 757
integrated pest management and low-till cultivation systems, 318
monetary value on high-biodiversity landscapes, 320
multifunctionality of agricultural systems, 319
natural enemies of crop predators, parasites, and pathogens, 318
plant biodiversity and improved pest and disease control, 317–318
biophysical impacts of, 374
carbon dioxide and, 366, 768, 778, 779
carbon sequestration and, 778
confined livestock systems, 752
conservation of biodiversity in agricultural landscapes, 759–760
constraints and opportunities for improved interventions and outcomes, 780–781
cropping systems, 753, 754
crops, 214–216, 215
biofortification, 323
biological control and crop protection, 279, 280, 856
mountain systems and, 694
trends in intensification of, 767, 831
use as feed, 217
cultural services and, 786–787
demand for cultivated products, 770–771
drivers of change in, 769–776, 770
dryland systems and

cash crop agriculture, 642–643
cultivated drylands, condition and trends of, 641–642, 652
monocropping systems, 649
ecological problems confronting, 27
economic growth and, 771, 781–784
equity and distributional aspects of, 785–786
extent of cultivated systems, 756, 851, 879
farmer characteristics, 774
food provision. See Food provision forests and agricultural expansion, 597, 608
fresh water and, 761–763
freshwater aquaculture systems, 752–753
fruits and vegetables, 214, 215
genetic diversity and, 757–758, 758
genetically modified crops, 773, 773, 786
global distribution and intensity of cultivated systems, 754–755, 755
history of, 749–750, 879
human well-being and, 781–787
infectious diseases and, 319
agricultural intensification and, 401	niche invasion and, 406
integrated systems
aquaculture, 777–778
pest management, 777
irrigation for. See Irrigation
land tenure and, 771
legal environment for, 771–772
linkages with nutrition and health, 784–785
livestock, 213–214, 216–219, 218
antibiotics in feed and resistant bacteria, 408
as main livelihood, 782
cryptosporidiosis in, 409
grazing, effect on drylands, 635
management choices for, 774–775, 775
markets for, 772–773
methane emissions and, 678–769
mixed crop and livestock systems, 751–752
mountain systems and, 694–696, 695
natural resource conditions and production systems, 775–776
nitrous oxide emissions and, 769
non-food products, 764
nutrient cycling and soils, 346, 764–768, 765–766
oil crops, 214, 215, 764
organic agriculture, 767, 772
pest control. See Pest regulation
policy and trade, 226–228
pollination. See Pollination
population growth and, 770–771
poverty and, 771, 782–783, 783
pricing, 773
property rights and, 780, 783
rain-fed systems, 750
research and development investment, 226, 227
private vs. public, 773–774, 785
seeds, 280–281, 281
shifting cultivation, 750–751
sociopolitical drivers and, 771–772
soil biodiversity and, 759
soil erosion and, 778–779
Agriculture (continued)
subsidies and import tariffs, 226–228, 771
technology changes and, 773–774
trade-offs, 776–777, 778, 871–872
trade policy and, 226–228, 785
trees and, 760, 779–780
typology of cultivated systems, 750–755, 751, 880
urbanization and, 810, 810, 815
water quality impacts, 763
water use efficiency and, 762–763
Agroforestry, 760, 779–780
AIDS. See HIV/AIDS
Air quality, 8, 13, 361, 374–378, 832–833
agriculture and, 382, 382
atmospheric constituents affected by ecosystems, 361, 362–364
biodiversity loss and, 384
biomass burning and, 382–384
deforestation and, 381, 383
dryland management and degradation, 382, 382
fertilizing effects, 377
forests and, 611–612
human well-being, effect on, 380–381
mortality and disability-adjusted life years, 380
inhalation of air pollution, 421
invasive species and, 384
island systems and, 383
marine organism changes and, 384
marine systems and, 383
mortality and illness from pollution, 421
OH and atmospheric cleansing capacity, 374, 375
pollution sinks, 374–375
pollution sources, 375–377
urbanization and, 383, 811, 813–814, 814
wetlands drying and draining and, 382, 383, 760
Alpine belt, 684–685, 685
Amazon. See Tropical forests
Amenity services. See Recreation, Tourism
Amphibians
recent population trends in, 102, 841
Analytical approaches for assessment, 37–71
Anthropogenic drivers of biodiversity, 96–99, 843
Antibiotics in animal feed and resistant bacteria, 408
Aquaculture, 221, 492, 558, 571–572
agriculture and, 752–753
integrated systems, 777–778
dryland systems and, 643
Aquatic plants, 562
Aral Sea, 139–140, 262, 558, 567, 568, 652, 697, 871
Arboviruses, 402–403, 404
Arctic, 719–720. See also Polar systems
carbon pools in, 721
Eurasian river discharge into, 723–724, 724
for regulating services, 307–319.
Assessment
of biodiversity, 80–81
of desertification, 637
of infectious diseases, 409–410
of nutrient cycles, 347, 348–350
of vulnerability, 149–151
country scores, 153
Assessment methods of MA, 34–35, 37–71
case studies of ecosystem responses to drivers, 53
core data sets used in, 65, 67
data handling procedures, 66
economic valuation, 54–59. See also Value associated with ecosystem services
graphic information systems (GIS), 44
human well-being
aggregate indicators, 62
economic valuation of ecosystem services for, 54–59
health indicators, 59–60, 61
indicators of specific dimensions of, 59–62
poverty and equity as indicators, 60–61
indicators of ecosystem condition and services, 49–52
inventories of ecosystem components, 44–48
biodiversity inventories, 45–47
demographic and socioeconomic data, 47–48
natural resource inventories, 44–45
MA system boundary definitions, 66
numerical simulation models, 43–49, 49
practical issues for, 81–82
remote sensing, 40–44
trade-offs in ecosystem services. See Trade-offs
traditional and local knowledge, 52–53
valuation. See Value associated with ecosystem services
Aotels, 522–523
ATSR World Fire Atlas Project, 448
Australia
drylands in, 656
deranged species in, 563
Environment Protection and Biodiversity Act (1999), 506
mammals disappearing in, 101, 107
water allocation reforms in, 178
Avian influenza, 407, 784
B
Axxon Biopharm Inc., 287
Bamboos and rattans, 255–256, 605
Basic material for a good life. See Human well-being
Bats and disease. See Rabies
Benefits transfer as valuation method, 58
Biochemicals. See Pharmaceutical industry
Biodiversity, 77–122. See also Species
agriculture and, 317–318, 319–320, 756–761, 757
anthropogenic drivers of, 96–99, 843
assessments of, 80–81
biogeographic realms, 82–85, 84–85, 840
current status of, 82–85
definition and measurement, 82
recent trends in, 110–111, 110–111
biomes, 85–87, 86–87, 839–840
current status of, 86–87
definition and measurement, 85–86
recent trends in, 109–111, 110
CIBD target for 2010, 112–113, 115
climate change and, 99, 315–317
conservation in agricultural landscapes, 759–760
current status of, 3, 82–96
distribution and value of, 283–284, 284
driver of change, 297–329
for regulating services, 307–319. See also Regulating services
for supporting services, 301–307. See also Supporting services
dryland systems and, 634, 634–635, 644–645, 656
ecosystem services and, 2–4, 29, 297–329, 300, 302–303
evolution of life and, 81, 81–82
extinction
amphibians in inland waters, 564
change in threats over time, 99
current threats, 105–107, 106–107, 222, 845
dryland systems, 644, 644
Index

fish, 504, 563
geographical patterns of, 107–109, 108
infectious disease and, 98
island systems and, 667
rates of, 3–4, 104–105, 844
terrestrial effects on supporting services, 301
traits associated with, 107
trends suggested by data, 109
food provision and, 3, 221–222
food shortage and, 222
forests and, 601–603, 602
genetic diversity, 94–96, 95
habitat change and, 96–97, 109, 109–111
human disease and, 319, 321–322
improving knowledge of, 111–114
island systems and, 667
loss
air quality and, 384
bioprospecting and, 292
climate change and, 384
dryland systems, conservation of, 644–645
ecosystem damage and, 422
forests and, 588
groundwater diversion and, 567
human well-being and, 322
marine ecosystem services, provision of, 320–322
marine fisheries and, 488–490
natural disasters and, 445–446
new products and industries from. See Bioprospecting
overexploitation and, 98–99
pest and disease control in agricultural systems, 317–319
polar systems and, 724–728
populations, 92–94
current status of, 93–94
definition and measurement, 92–93
recent trends in, 99–104
recent trends in, 99–111
regulating services and, 307–319. See also Regulating services
species. See Species substitutions, feasibility of, 32
summary of trends, 114–115
supporting services and, 301–307
trade-offs, 834
Biofortification, 232
Biofuels, 283, 764
Biogeochemical cycles, 82–85
climate change and, 99, 573
cranes’ sacred status, 559
current extinction threat, 106, 107, 845
dryland systems, conservation of, 644–645
ecosystem damage and, 422
geographical patterns of extinction, 108
human well-being and, 322
water diversion project in, 184–185
infant mortality and, 577
internal climate and, 834
intergovernmental agreements, and policies, 289–292
integrated agriculture-aquaculture systems in, 777
invasive species. See Invasive species
infectious disease and, 98
geographical patterns of, 107–109
fish, 504
mammal extinction in, 107
mammal extinction threat in, 107
shorebirds and seabirds, 526–527
Blackflies and river blindness, 403
Blue baby syndrome, 577
Bonn Convention, 504
Boreal forests. See Forests
Botanical medicine industry, 276–278, 278–279, 605
Bovine spongiform encephalopathy (‘‘mad cow’’ disease), 407
Brazil. See Latin America
Breeding sites and transmission of infectious diseases, 397–407, 404–405
Bushmeat hunting, 528
disease emergence and, 407
Butterflies, 104

Call for action, 22–23
Canada. See also North America
forests in, 591
Capacity building and dryland systems, 656
Carbon cycle, 344, 344, 360
Carbon dioxide, 360–367, 362, 366, 858
agriculture and, 778, 778, 779
fertilization and, 377
fluxes, 367, 858
forests and, 667, 612–613
future trends in, 366–367
mountain systems and, 690
ocean acidification and, 374–375
Carbon flux in polar systems, 723, 723
Carbon monoxide, 376
Carbon sequestration, 316–317, 345–346, 379
agriculture and, 778
dryland systems and, 631, 632, 653
forests and, 605–606
iron enrichment of ocean waters for, 505
wood products and, 252
Caribbean. See also Island systems
mammal extinction in, 107
nutrient balance in, 336
trends in coral cover in, 103
Caribou and reindeer, 725–726, 728–729
Caspian Sea, 566
Caviar industry, 566
CBD. See Convention on Biological Diversity
Center for Disease Control and Prevention (U.S.), 197
Center for International Forestry Research (CIFOR), 589
Chagas disease, 408
Charcoal, 259–260, 260
Chemicals pollution, 196–197, 811
Children. See Infants and children
China. See also Asia
air pollution causing death and illness in, 421
aquaculture in, 221
integrated agriculture-aquaculture systems in, 777
water diversion project in, 184–185
Choice modeling as valuation method, 57–58
Cholera, 405–406, 530, 834
CIFOR. (Center for International Forestry Research), 589
Ecosystems and Human Well-being: Current State and Trends

Coastal systems, 513–549

Cloud formation, 371, 697

Closed forests, 589, 590

Climate change

agriculture and, 382, 382, 768–769, 848
Aral Sea, 568
as driver of change, 5, 361
background of, 358–359, 359
biodiversity and, 99, 315–317, 384
biogeochemical effects of ecosystems on, 359–371, 360. See also Greenhouse gases
biomass burning and, 382–384
biophysical effects of ecosystems on, 371–374
biophysical hotspots, 372–374
birds and, 573
coastal systems and, 528, 534–535
coral reefs and, 523
deforestation and, 381, 383
dryland systems and, 382, 382, 630–631, 631, 650–651, 653
feedbacks on, 378
fires and, 451
fish and, 573
food provision and, 228–229
forests and, 612–613
human well-being, effect on, 378–380
inland water systems and, 537–558, 573
interannual variability, 378
invasive species and, 384
island systems and, 383, 676
marine fisheries and, 490, 498
marine organism changes and, 384
marine systems and, 383, 498
mountain systems and, 689
polar systems and, 721–724, 729
regulation of, 13
surface properties and, 371–372
threats and potential benefits of, 152
trade-offs, 832–833
trends in, 8
urbanization and, 383
water resources and, 188–189, 189
wetlands drying and draining and, 382, 383
Closed forests, 589, 590

Cloud formation, 371, 697

Coastal systems, 513–549
atolls, 522–523
background, 516–518
climatic change and, 534–535
condition of, 16–18, 518–525
coral reefs. See Coral reefs
delimitation of, 516, 517
demographics and, 529–531, 530, 541
diversion of waters from, 534, 535
drivers of change in, 536–537, 539
ecosystem services and relative magnitude provided by, 527
estuaries, marshes, salt ponds, and lagoons, 518–521, 519, 519–520, 530
fishing and, 479
floods, role in regulation of, 444–445
globalization and, 537

Conflict management in marine fisheries, 501
Conflicts and wars, 126, 127–128, 128
forests and, 611
mountain systems and, 708
Consumer household wastes, 431
Continental shelf areas. See Coastal systems
Contingent valuation, 57

Convention on Biological Diversity (CBD)
benefit-sharing and partnerships, 285–286
biodiversity target for 2010, 112–114, 113
corporate compliance with, 291
cultural diversity, preservation of, 472
ecosystem approach endorsed by, 29
efficiency of, 289–290
equity considerations, 289
Global Strategy for Plant Conservation, 104
marine biodiversity, joint study with UNCELOS, 501
national legislation under, 290–291

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), 501, 504

Convention on Migratory Species, 26
Convention on the Conservation of Antarctic Marine Living Resources (1980), 734
Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention), 504

Convention on Wetlands. See Ramsar Convention on Wetlands

Convention to Combat Desertification, 26, 289

Coordinating Body of Indigenous Organizations of the Amazon Basin, 290

Coral reefs, 3, 103, 115, 484, 489, 505, 522–523, 527, 530, 532–533, 535, 832, 867
core data sets used in MA, 65, 65
cosmetics industries, 278–279
cost-based approaches to valuation, 56–57
costs
of fire damage, 452
of fresh water delivery, 192–194
of illness, 56
of salinization, 436, 447
cotton production. See Fiber production
craft wood, 251–252
crocodiles, 523–524, 564
crops. See Agriculture
cross-scale interactions, 33
Cruces, 104
Cryptosporidiosis, 409
cultivated systems. See Agriculture
cultural and religious drivers, 75
cultural identity, 458–460, 460, 633
cultural landscapes, 461–462, 462–464, 561, 633
cultural services, 455–476
adaptive management strategies, 474
aesthetic services, 467–469, 468
agriculture and, 786–787
background, 457–458
defined, 29
drivers of change in, 472
dryland systems and, 633–634
define regulation changes affect, 449
food provision and, 237
forests and, 606–607
human well-being and
aesthetic services, 469
cultural identity, 460, 472–473
cultural landscapes, 462
health, 473
inspirational services, 467
material well-being, 473
spiritual services, 465
inland water systems and, 559
inspirational services, 465–467, 633
island systems and, 669–672
knowledge systems and, 458
landscape management and sustainability, 473, 474
lessons learned, 473–474
links between language, culture, and natural environment, 459, 460
mountain systems and, 705–706
polar systems and, 729, 733
links to ecosystem services, 736–737
trade-offs between industrial development and cultural resources, 733
recreation, 469–472
tourism. See Tourism
trade-offs. See Trade-offs
traditional technologies, 473, 473–474. See also Knowledge
trends in, 9–10, 14, 458–472
cultural identity, 458–460, 460
cultural landscapes, 461–462, 462–464
spiritual services, 462–465
Cyclones and current extinction threat, 106
Cyclones, 676

D
Dams and reservoirs
effect of, 97, 178, 534
hydroelecctricity needs in Brazil and, 569
investment in, 191
mountain systems and, 697–698
Nepal, floods and landslides affecting, 698
number of, 560
trade-off with disease, 396, 402
water supply and, 171–172, 177, 183–184, 184
Danube River, 569
DDT, 434. See also Pesticides
Dead Sea, 569
Decision-making process
drivers of change and, 32
public participation in, 32
strategies and interventions in, 35–36
Deforestation, 597–600, 598–599, 830. See also Tropical forests
agricultural expansion and, 597, 608
air quality and climate change due to, 381
areas of rapid land cover change involving, 881
defined, 597
direct drivers of, 608–609
flooding and, 450, 862
indirect drivers of, 609, 610
for fires, 449, 450–451
for food provision, 222–229, 223–224. See also Food provision
for forests, 607–613
for fresh water, 181–190
management of water supplies, 182–185
population growth, 181–182
for inland water systems, 566–573
for island systems, 672–676
for marine fisheries, 490–492
for mountain systems, 705, 706–709
for polar systems, 729–731
for timber production and consumption, 252–254
for urbanization, 818–820
for waste processing and detoxification, 430–431, 432–434
indirect drivers, 33
interactions among, 33, 76
sociopolitical drivers, 74–75
within MA conceptual framework, 33
Drought, 577, 612–613, 668
Drugs. See Pharmaceutical industry
Dryland systems, 623–662. See also Desertification
adaptation of new technologies, 655–656
air quality and, 382, 382
alternative livelihoods for, 642–644
aquaculture in, 643
biochemicals and, 632
biodiversity and, 634, 634–635, 644–645, 656
biophysical indirect and direct drivers in, 650–651
capacity building and, 656
cash crop agriculture, 642–643
capital sequestration and, 631, 632, 653
cash crop agriculture, 642–643
capital sequestration and, 631, 632, 653
culture change and, 650–651, 653
capital regulation and, 630–631, 631
condition of, 16, 636–645
conservation of biodiversity, 644–645
cultivated drylands, condition and trends of, 641–642
water use and, 652
social services of, 633–634
defined, 626
demographic drivers in, 649
deserts. See Deserts
drivers of change in, 645–651
dust from, 656
economic drivers, 650
ecosystem services provided by, 626–636
ecosystems in, 626
evaporation and, 630–631
fires and, 651
floods and, 651
food and fiber, 631–632
forests and, 603–604, 628
freshwater provisioning, 632–633
globalization and, 650
governance approaches, 650
grasslands, 634
habitat loss and fragmentation, 635
human well-being and, 133–134, 653–655, 654
dependence on ecosystems and socioeconomic drivers, 655
Dryland systems (continued)

responses to improve, 655–656
hunger and child mortality in, 654, 654
infant mortality rate in, 654
compared to forests, 135
infectious diseases and, 400–402
inherent instability of, 646
interrelationships between services, biodiversity, livelihoods, and aridity, 635–636, 636
land degradation of, 636–640
land tenure policies and, 649
land uses in, 627, 637–640, 640
livestock grazing, effect of, 635
Mediterranean forests, woodlands, and shrublands, 634–635
misleading responses to degradation, 646–648, 647
monocropping systems, 649
nutrient cycling and, 629
oases in hyper-arid and arid drylands, 641–642
pollination and, 631
primary production of, 629, 630
provisions services of, 631–633
rainfall and, 631
rangelands, condition and trends of, 640–641, 641
recreation and tourism, 654, 643–644
regulating services of, 630–631
seed dispersal and, 631
semitard and dry subhumid agriculture, 642
silviculture and rain-fed horticulture, 642
socioeconomic and policy drivers in, 648–650
soil formation and conservation, 628–629
species endangerment and extinction in, 644, 644
subtypes of, 626, 627–629
supporting services of, 628–629
trade-offs and synergies, 651–653
traditional knowledge and, 655
traditional livelihoods and, 651–652
urban livelihoods and, 643
urbanization and, 652–653, 653
water regulation and, 630, 649–650
water use and, 650
woodfuel and, 632
Dust deposition, 339, 528
dryland systems and, 653
fertilization and, 377–378
infectious disease and, 401
mineral dust, 371
pollution from, 377

E

Earth Summit (1992), 710
Ebola virus, 407
Eco-footprint analysis, 817
Economic conditions and growth
agriculture and, 771, 781–784
dryland systems and, 650
fires and, 451
food provision and, 225, 225
island systems, 674–675
losses due to wastes, 421–422
marine fisheries, 495–497
mountain systems, 700–705, 703
natural disasters and, 452
urbanization, 800
Economic theory and human well-being, 127, 135
Economic valuation, 34, 54–59 See also Value
associated with ecosystem services
application of, 58–59
intrinsic value, 62–63
Ecosystem engineers, 315
Ecosystem services. See also Cultural services;
Provisioning services; Regulating services;
Supporting services
biodiversity and, 2–4, 29
conceptual framework and, 29–32
critical levels in capacity of ecosystems to provide, 834–835
cultural and spiritual services. See Cultural services
defined, 27
dryland systems providing, 626–636
forests providing, 588, 600–607, 601, 608
linkage with human well-being, 2, 28, 53, 139–140
sensitivity to ecosystem change, 132–139
of mountain systems, 688, 689
provisioning services. See Provisioning services regulating services. See Regulating services
trade-offs of. See Trade-offs
trends in, 6–14, 7–10
urbanization and, 799, 805–806, 806–807
urban and peri-urban areas, 809–811
values associated with, 33–34, 34
Ecosystems, 29
areas with biggest changes in, 829–830
boundaries for, 29, 83
defined, 27, 81
degradation of, 27
fresh water, environmental flows for, 177–179
urbanization, relationship to, 799
Ecotourism, 27, 283
dryland systems and, 634, 643–644
forests and, 607
island systems and, 18, 670–672, 671
polar systems and, 729
Edge effects, 96, 311–312
forest/urban interface, 408–409
El Niño effects
island systems and, 668
rodenis and, 401
El Niño-Southern Oscillation (ENSO), 229, 567
Employment and livelihood
agriculture, 781–784
dryland systems, 642–644
interrelationships between services, biodiversity, livelihoods, and aridity, 635–636, 636
traditional livelihoods, 651–652
urban livelihoods, 643
forest products industry, 249
forests, 597
marine fisheries, 494–495, 497
mountain systems, 701
polar systems and, 734
Endangered species. See Biodiversity; IUCN Red List of
Threatened Species
Endogenous drivers. See Drivers of change
Energy. See also Fuelwood
biofuels, 283, 764
fossil fuels, 261
island systems and, 672–673, 673
Engineered wood products, 253
ENSO. See El Niño-Southern Oscillation
Equity and access rights
agriculture and, 785–786
human well-being, inequitable distribution of, 2
marine fisheries and, 499–501
Estuaries, 518–521, 519–520, 530
Ethnobotanical development, 276, 285–289
Europe. See also European Union; specific countries
Danube River, 569
fires in, 447, 448, 449
fish consumption in, 588
floods in, 447–448, 447–448
invasive species in rivers of, 570
kast in Slovenia, 561
Mediterranean wetland program (MedWet), 574, 575
waste containment failures in, 557
European Union
biodiversity target for 2010, 112
Common Fisheries Policy, 495, 506
cultural heritage in, 461
marine strategy, 504
Eutrophication, 4–5, 345, 345–346, 437–438, 438, 534. See also Nitrogen
inland water systems, 572, 572–573
Evaporation and dryland systems, 630–631
Evapotranspiration, 371, 372
Everglades, 574
Evolution of life and biodiversity, 81, 81–82
Exogenous drivers. See Drivers of change
Extinction. See Biodiversity
Extreme events. See Natural disasters and extreme events
Forests (continued)
carbon sequestration and, 605–606
certification, 254
changes in area and condition of, 597–600, 598–599
close forests, 589, 590
defined, 590
distribution by forest types, 595–596
distribution of people in, 596–597
drivers of change in, 607–613
dryland systems and, 603–604, 628
ecosystem services provided by, 588, 600–607, 601, 608
employment related to, 597
extent of, 592–595, 594–595, 874
fiber, fuel, and non-wood forest products, 604–605
fires. See Fires
global forest cover, changes in, 597–599
global mapping methodologies, 592, 593
human well-being and, 613–614
infant mortality rate in, compared to drylands, 135
infectious disease and
terrestrial host transfer and, 407
island systems and, 603–604, 669
management practices, 602
mountain systems and, 603–604, 691–694, 693, 704
national-level forest information, 590–592
natural forests, 596
non-wood forest products, 255–257, 604–605
plantations. See Forest plantations
private vs. public ownership, 247, 247, 611
protected areas, 602, 602
recreation and, 607
regions used in wood products analyses, 246, 246–247, 835
sociocultural values and services, 606–607
soil and water protection, 603
sustainable management, 253–254, 589
trees outside of, 596
value of forest services, 600, 605, 607
wood volume and biomass, 596
Fossil fuels, 261
FRA-2000. See Global Forest Resources Assessment 2000 (FAO)
Freedom of choice and human well-being, 30
Fresh water, 8, 12. See also Water resources
agriculture and, 761–763
available supplies for humans, 170–174
background, 168–170
consequences of poor water quality on human well-being, 195–197
dams and reservoirs. See Dams and reservoirs
data collection, 169–170
definitions of key terms, 169
delivery cost and pricing, 192–194
distribution, magnitude, and trends in, 170–181, 171, 852
drivers of change for, 181–190
management of water supplies, 182–185
population growth, 181–182
dryland systems and, 632–633
environmental flows for ecosystems, 177–179
estimates of renewable supply, 173, 173, 849
flows accessible to humans, 172–174, 173
global ranking of water quality issues based on regional assessment, 181, 182–183
global trends in water diversion and flow distortion, 177
governance and management of environmental flows, 177–179, 178
history and projected trends of use (1960–2010), 176
human well-being and changes in provision of, 190–197
indicators or indices for national or regional scale, 191–192
infectious disease and changes in freshwater systems, 405–406
island systems and, 668–669
MA context, 168
Ministerial Declaration of 2nd World Water Forum, 168, 170, 193
nutrient excess in, 345–346, 348
polar systems and, 724
pollution. See Water pollution
privatization of management and delivery, 193–194
quality of water, 179–180, 179–181
sanitation and provision of clean water, 197, 197–198
scarcity of, 175–177, 191–192
total flows, 172
trade-offs in use of, 197–199, 200
vulnerability to natural disasters and, 54
GLOBSCAR. See on fire activity, 448
Goverance
dryland systems and, 650
fresh water and environmental flows and, 177–179, 178
Government policies
food provision, effect of, 3
mountain systems and, 706
trade policies. See Trade
traditional knowledge and, 459
Grasslands, 634
Great Lakes (U.S.), 103, 558, 571
Green chemistry, 424
Greenhouse gases, 359–361, 365. See also specific type
cultivated systems and, 768
trees outside of, 606
value of forest services, 600, 605, 607
wood volume and biomass, 596
Fossil fuels, 261
FRA-2000. See Global Forest Resources Assessment 2000 (FAO)
Freedom of choice and human well-being, 30
Fresh water, 8, 12. See also Water resources
agriculture and, 761–763
available supplies for humans, 170–174
background, 168–170
consequences of poor water quality on human well-being, 195–197
dams and reservoirs. See Dams and reservoirs
data collection, 169–170
definitions of key terms, 169
delivery cost and pricing, 192–194
distribution, magnitude, and trends in, 170–181, 171, 852
drivers of change for, 181–190
management of water supplies, 182–185
population growth, 181–182
Genetically modified crops, 773, 773, 786
Geographic information systems (GIS), 44
Geographical patterns of extinction, 107–109, 108
Glaciers, 689, 690, 690, 691
Global Amphibian Assessment, 564
Global Assessment of Soil Degradation (1991), 637, 647
Global Buried Area Product, 612
Global energy sources and costs, 253
Global Environmental Change and Human Security Project (International Human Dimensions
Programme on Global Environmental Change), 150, 151
Global Forest Resources Assessment 2000 (FAO), 104, 590, 591, 592, 596, 599, 612
Global Leaders for Tomorrow Environment Task Force (2002), 150, 152
Global mapping methodologies for forests, 592, 593
Global scale of wastes, 425
Global Strategy for Plant Conservation, 104
Globalization
coastal systems and, 537
dryland systems and, 650
island systems and, 675
marine fisheries and, 491–492
timber and, 252
vulnerability to natural disasters and, 154
Habitat fragmentation, 96, 310
dryland systems and, 635
infectious disease and, 408
Habitat loss and changes, 5–6, 96–97
coastal systems and, 537
dryland systems and, 635
island systems and, 397–407, 398, 402
marine fisheries and, 492, 495
recent trends in, 109, 109–111
Hantavirus, 401, 406
Hazard regulation. See Natural disasters and extreme events
Hazardous materials, consumer-use, 431
HDI. See Human Development Index
Heat island effect of cities, 807–808

G
Gender-related Development Index, 127
Gender-related issues
deforestation and, 614
farming and, 774, 785, 786
island systems and, 672
water poverty and, 192
Genetic changes of disease vectors or pathogens, 408–409
Genetic diversity, 7, 12–13, 94–96, 95
agriculture and, 757–758, 758
marine fisheries and, 489–490
Genetic drift, 94

H
Habitat fragmentation, 96, 310
dryland systems and, 635
infectious disease and, 408
Habitat loss and changes, 5–6, 96–97
coastal systems and, 537
dryland systems and, 635
island systems and, 397–407, 398, 402
marine fisheries and, 492, 495
recent trends in, 109, 109–111
Hantavirus, 401, 406
Hazard regulation. See Natural disasters and extreme events
Hazardous materials, consumer-use, 431
HDI. See Human Development Index
Heat island effect of cities, 807–808
Heavy metals, 196, 376, 522, 557, 730
Hedonic analysis as valuation method, 57
Herbicides. See Pesticides
Herbivory, 310–312
Heritage conservation, 465, 465, 633. See also Cultural services
Hides, skins, and greasy wool, 266
High-income cities, 819–820
HIV/AIDS, 159, 394, 396, 406, 605, 785
Homogenization of species, 109
Horticulture and agricultural seeds, 280–281, 281, 314
dryland systems, 642
Household trash and hazardous wastes, 431
Human Development Index (HDI), 127, 128, 153
Hoodia,
Homogenization of species, 109
Horticulture and agricultural seeds, 280–281, 281, 314
dryland systems, 642
Household trash and hazardous wastes, 431
Human Development Index (HDI), 127, 128, 153
Human well-being, 123–142
aggregations of multiple dimensions in, 127
agriculture and, 781–787
air quality, effect on, 380–381
mortality and disability-adjusted life years, 380
assessment methods
aggregate indicators, 62
economic valuation of ecosystem services for,
54–59
health indicators, 59–60, 61
indicators of specific dimensions of, 59–62, 129,
129–131
poverty and equity as indicators, 60–61
basic material for a good life, 29, 125–126
air quality and, 380
climate change and, 379
cultural services and, 473
drylands and, 654
sensitivity to ecosystem change, 132–135
biodiversity and, 322
cclimate change and, 378–380
coastal systems and, 530–531, 531, 542–543
cultural services and
aesthetic services, 469
cultural identity, 460, 472–473
cultural landscapes, 462
health, 473
inspirational services, 467
material well-being, 473
spiritual services, 463
decline or stagnation in, 835–836
defined, 27
dryland systems and, 133–134, 653–655, 654
dependence on ecosystems and socioeconomic
drivers, 655
responses to improve, 655–656
economic value and. See Value associated with ecosystem services
ecosystem services’ contribution to, 829
food provision and, 229–238. See also Food provision
forests and, 613–614
freedom and choice, 30, 126
drylands and, 654
sensitivity to ecosystem change, 135–139
fresh water and changes in provision of, 190–197
fuelwood and, 259
groundwater, importance for, 557
health, 29–30, 126
agriculture linkages, 784–785
air quality and, 380–381, 813–814
climate change and, 379
coastal systems and, 530
cultural services and, 473
drylands and, 654
floods and fires, impact on, 452–453
groundwater diversion and, 567
indicators, assessment of, 59–60, 61
nutrition and, 229–235, 230–231
polar systems and environmental effects on, 737
sensitivity to ecosystem change, 139
urbanization and, 812–813, 813–814, 821
wastes, damage caused by, 420–421
inland water systems and, 575–578, 576
island systems and, 667, 676–678
linkage with ecosystem services, 2, 28, 53, 139–140
sensitivity to ecosystem change, 132–139
mountain systems and, 705, 711–713
natural disasters and, 127, 194–195, 443, 452–453
nutrient cycles, effect when altered, 347–351
patterns and trends in distribution of, 127–132, 847
distributional patterns, 128
global trends, 127–128
spatial patterns, 128–131, 129–131
temporal patterns, 129, 131–132
polar systems and, 734–738
poor water quality, consequences of, 195–197
poverty reduction and, 29, 32–33
provisioning services and. See Provisioning services
regulating services and. See Regulating services
security and, 29, 126–127
air quality and, 380
climate change and, 379
drylands and, 654
fires, 451–452
floods, 451
sensitivity to ecosystem change, 139
social relations and. See Social issues
substantial improvements in, 2
urbanization and, 806
Hunger. See Food shortage
Hydrocarbons, 435
Hydroelectricity needs in Brazil, 569
Hydrology. See Water resources
Hypoxic zones, 536
ICBG. See International Cooperative Biodiversity Groups
Illegal fishing, 491
InBio (Instituto Nacional de Biodiversidad), 287
Incorporation of wastes, 428, 431
Income growth. See Economic conditions and growth
Index of Biotic Integrity, 111
India
agriculture and poverty reduction in, 783, 783
Biological Diversity Act (2002), 291
Bundelkhand region and land cover change,
161–162, 162
cholera epidemics in, 406
drylands in, 656
fresh water supply in, 172
integrated agriculture-aquaculture systems, 777
lymphatic filariasis in, 404
mosquito-borne diseases and irrigation in, 399, 400
spirit sanctuaries in, 27
wetland plants removing chemical and industrial
discharges in, 557
Indigenous peoples. See also Nomadic lifestyle
declations, codes, research agreements, and
policies, 291–292
traditional knowledge of. See Knowledge
Indonesia. See also Asia
gotong royong (mutual help) in farming operations,
786
natural disasters and extreme events, 675
recent major fires, 381, 567
indoor pollution, 12, 813
industrial development and water resources, 190
industrial waste, 420, 572
industrial wood residues, 260
Infants and children
anemia from drinking water, 196, 577
mortality rate, 846–847
coastal vs. inland areas, 530
dryland systems, 135, 654
malnutrition and, 229, 233
water-related diseases as cause, 577
Infectious diseases, 98, 391–415, 860. See also specific disease
agricultural practices and niche invasion, 406
Amazon region
forest arboviruses and, 402–403
forest’s resilience in preventing, 397
antibiotics in animal feed and resistant bacteria, 408
assessing methods for, 409–410
biodiversity and, 407–408
agriculture, 319
marine systems, 321–322
breeding sites and effect on transmission of,
397–407, 404–405
bushmeat hunting and disease emergence, 407
coastal and freshwater system changes and
transmission of, 405–406
drylands and grasslands change and transmission of,
400–402
ecology of, 394–395, 395
ecosystem change and, 395–396, 396, 410–411
emergence, 397–398
defined, 395
environmental contamination of infectious agents of
diseases, 409
extinction and, 98
forest systems
interspecies host transfer and, 407
population density variations and, 408
forest/urban interface
biodiversity change at, 408
Infectious diseases (continued)
gene changes in disease vectors at, 408–409
habitat change and transmission of, 397–407, 398, 402
historical perspective on, 394
human host transferring to wildlife, 407
human-induced genetic changes of disease vectors or pathogens, 408–409
irrigation and water development, 397–400, 785
malnutrition and, 409
mosquito-borne diseases, 399, 402, 402, 403, 404, 405
niche invasion and transmission of, 406–407
nomadic lifestyle and, 409
“reemerging,” 397
defined, 395
regulatory trends in, 9, 13, 396–409
rodent-borne hemorrhagic viruses, 400
schistosomiasis, 398–399
rodent-borne hemorrhagic viruses, 400
tropical forest changes and transmission of, 402–403
tsetse flies and, 400
tropical forest changes and transmission of, 402–403
trade-offs and, 395, 833–834
schistosomiasis, 398–399
rodent-borne hemorrhagic viruses, 400
tropical forest changes and transmission of, 402–403
trade-offs and, 395, 833–834
schistosomiasis, 398–399
rodent-borne hemorrhagic viruses, 400
tropical forest changes and transmission of, 402–403
trade-offs and, 395, 833–834
schistosomiasis, 398–399
rodent-borne hemorrhagic viruses, 400
urbanization and transmission of, 403–405, 408, 811–812
water-related diseases, 195–196, 395, 397–400, 409, 530, 577, 675
Influenza, 406, 407
Inland water systems, 551–583. See also specific lakes, rivers, and seas
amphibians and, 564
aquatic plants, 562
background, 553–554
birds and, 564–566, 565
culture change and, 557–558, 573
condition of, 14–16, 559–566, 869
invertebrates, 562–563
loss and degradation of, 560–561
mammals and, 566
management of interventions, 573–575
modification of water regimes, 568, 568–570
mountain systems and, 696
physical change in, 566–567
pollution and eutrophication, 572, 572–573, 769
products from, 558
recharge/discharge of groundwater, 557
recreation and tourism, 558–559
reptiles and, 564
rice, 558
river fragmentation, 97, 569, 873
sediment retention and water purification, 556–557
services derived from, 554, 554–559
species associated with, 561–562, 561–566
trade-offs and synergies, 573–575
Insects. See Pesticides
Influenza, 406, 562
polar systems and, 728
Inspirational services, 465–467, 633
Instituto Nacional de Biodiversidad (InBio), 287
Intelligence property rights, 290
Inter-American Development Bank and conservation efforts, 471
Interactions among drivers and ecosystems, 33
Interbasin transfers and water resources, 184–185
Intergovernmental agreements on biotech development, 289–290
Intergovernmental Panel on Climate Change (IPCC)
findings used as basis in present assessment, xv, 150
on flood damage, 449
on projected climate change, 378, 612
on sea level, 676
threats and potential benefits of climate change, 152
International agreements
bioprospecting and, 285–289
coastal systems and, 541–542
ecosystem development and, 285–289
fisheries, 501, 505–506
International Collective in Support of Fishworkers, 502
International Cooperative Biodiversity Groups (ICBG), 287, 288, 289
International Covenant on Economic, Social and Cultural Rights (1966), 229
International Disaster Database (OFDA/CRED), 447
International fisheries instruments, 501, 505–506
International Labour Organization’s Convention No. 169 Concerning Indigenous Peoples, 289–290
International Maritime Organization, 504
International Red Cross, 150
on flood damage, 447
International Seabed Authority, 504
International Treaty on Plant Genetic Resources for Food and Agriculture, 290
International Whaling Commission, 491, 501
International Year of Fresh Water (2003), 168
International Whaling Commission, 491, 501
International Year of Fresh Water (2003), 168
Interlampbrushes, 9, 13, 560, 870
Influenza, 406, 407
Inland water systems, 551–583. See also specific lakes, rivers, and seas
amphibians and, 564
aquatic plants, 562
background, 553–554
birds and, 564–566, 565
culture change and, 557–558, 573
cultural value of, 559
drainage, clearing, and infilling, 566–567
drivers of change in, 566–573, 870
drylands and, 652
economic value of ecosystem services provided by, 555, 555, 557
extent of, 559–561, 560, 851, 869
fish and fisheries in, 103, 563–564, 571–572
fungi, 562
human well-being and, 573–578, 576
hydrological regulations, 555–556
invasive species and, 570–571
invertebrates, 562–563
loss and degradation of, 560–561
mammals and, 566
management of interventions, 573–575
modification of water regimes, 568, 568–570
mountain systems and, 696
physical change in, 566–567
pollution and eutrophication, 572, 572–573, 769
products from, 558
recharge/discharge of groundwater, 557
recreation and tourism, 558–559
reptiles and, 564
rice, 558
river fragmentation, 97, 569, 873
demographic and socioeconomic data, 47–48
natural resource inventories, 44–45
Invertebrates
inland water systems and, 562–563
recruitment population trends in, 103–104
iodine deficiency, 232
IPCC. See Intergovernmental Panel on Climate Change
Iron, 232, 336
enrichment of ocean waters for carbon sequestration, 505
Irrigation, 12, 191, 750, 761–762, 850
diversion of groundwater for, effect of, 567
infectious diseases and, 397–400, 785
mosquito-borne diseases, 399, 399
schistosomiasis and, 398–399
Island systems, 663–680
access and transportation, 674–675
adaptation of, 677
air quality and, 383
background, 665–666
biodiversity and, 667
biodiversity hotspots, 667
climate change and, 383, 676
condition and trends in, 18, 667–672
cultural services and, 669–672
definitions and categorization, 666
desalination and, 668–669
diversification of economies, 675
drivers of change in, 672–676
economic changes in, 674–675
energy issues, 672–673
extinction risk and, 107, 108
fisheries and, 667–668
forests and, 603–604, 669
fresh water and, 668–669
gender-related issues, 672
globalization and, 675
habitat loss and, 674
human well-being and, 667, 676–678
insularity of, 666–667
integrated management of, 678
invasive alien species and, 673–674
land degradation and, 674
land ownership, 674
marine fisheries, interactions with, 498
natural disasters and extreme events, 675–676
outmigration from, 672
physical conditions and, 668
pollution and, 674
population issues in, 672
sea level rise and, 676, 676
speciation, 667
tourism and, 670–672
transport and, 675
traditional knowledge and, 669–670, 670
vegetation cover and, 669
vulnerability of, 677–678
water quality and, 669
Nipah virus, 406–407
Nitrogen, 340–341, 341, 856–857. See also Eutrophication; Nutrient cycling
agricultural use of, 221, 760, 764, 767
fertilization and, 377
future trends of, 21, 833
pollution, 376–377, 437–438, 438, 785
Nitrous oxide, 362–363, 369, 769
Nival belt, 685, 685
Nomadic lifestyle
Arctic nations and, 732
dryland management and, 649
government policies and, 459
infectious diseases and, 409
Non-utilitarian value paradigm, 34
Non-wood forest products, 255–257, 604–605. See also Forests
North America
dangered species in, 563
fires in, 447, 448, 449, 452
fish consumption in, 558
floods in, 447–448
mollusks and crustaceans in, 562–563
North Atlantic fisheries agreements, 501
North Atlantic Oscillation, 229
Numerical simulation models, 43–49, 49
Nutrient cycling, 351–353, 354, 850. See also Fertilizers, application of
agriculture and, 346, 764–768, 765–766
balance between nutrients, 335–336, 335–336
coastal systems and, 528, 534
consequences of changes to, 344–347
deficiencies in nutrients, 346
dryland systems and, 629
fresh waters, excess in, 345–346, 348
global carbon cycle, 344, 344
global dust deposition, 339
global nitrogen cycle, 340–341, 341, 856
global phosphorus cycle, 341–342, 342
global sulfur cycle, 342–344, 343, 857
human well-being, effect of altered nutrient cycles, 347–351
input and output processes, 339–340
iron, 356
marine waters
dead zones, 346
excess in, 345–346
ocean regions with high nutrient, low chlorophyll, 346
threats to, 346–347, 348
monitoring and assessment of, 347, 348–350
mountain systems and, 689–690
organic matter, role of, 336–337
retention in ecosystems, 337–338
silicon, 337
soil erosion and, 338–339, 339
trade-offs, 833
Nutrition. See Food provision
O

Oases in hyper-arid and arid drylands, 641–642
Obesity, 233–235
Oceans. See also Marine systems
 carbon dioxide and, 360–361, 366, 374–375
 integrating coastal management and ocean policy, 504
 iron as essential fertilizer in, 336, 505
 North Atlantic, substantial marine biomass decrease in, 484, 864
 regions with high nutrient, low chlorophyll, 346
 silicon in, 337
 Odonata (dragonflies and damselflies), 562, 563
 OFDA/CRED International Disaster Database, 447, 449
 Oil crops, 214, 215, 764
 Onchocerciasis (river blindness), 403
 Organic agriculture, 767, 772
 Organic matter, role of, 336–337
 Organic agriculture, 767, 772
 Outermost regions, 560
 Overharvesting, 293
 Overexploitation
 aquatic plants, 562
 dryland plant species, 635
 forests, 248, 590, 599–600, 606
 timber, 248–249, 253, 664
 Plants. See also Agriculture; Horticulture and agricultural seeds
 aquatic plants, 562
 dryland plant species, 635
 interactions with animals, 310–314
 interactions with symbiotic microorganisms, 309–310
 polar systems and, 724–725, 725
 recent trends in, 104, 842
 Pollution
 cultivation and, 759
 dryland systems and, 631
 regulatory trends in, 9, 312, 313, 314
 persistent organic pollutants (POPs). See Persistent organic pollutants
 air quality; Waste; Water pollution
 ecosystem problems associated with, 4–5
 island systems and, 674
 marine systems, 483
 polar systems and, 730
 regulatory trends in, 9, 13
 Polynesian tree snail, extinction of, 98
 POPs. See Persistent organic pollutants
 Population changes, 5, 129–132
 agriculture and, 770–771
 Arctic, 734–736, 755–736
 areas characterized by low well-being and low ecosystem productivity, 2, 3
 fishing and marine resources linked with, 528
 food provision and, 224
 fresh water and, 181–182
 island systems, 672
 mountain systems, 699–700, 699–706
 urban areas, 799–800, 800–802
 wastes proportional to, 422–423
 Potsdam Institute for Climate Impact Research, 155
 Poverty
 agriculture and, 771, 782–783, 783
 ecosystem degradation and, 27
 human well-being and, 32–33
 indicators of, 60–61
 reduction of poverty, 29–32
 malnutrition and, 229–230
 natural disasters and, 432
 unequal access to ecosystem services, 2, 32
 urbanization and, 810, 812
 vulnerability to natural disasters and, 154
 Precipitation. See Rainfall
 Predators
 food web interactions and, 314–315, 321
 habitat fragmentation and, 408
 natural enemies of crop predators, 304
 ocean regime shifts and, 524, 863
 Pricing
 agriculture, 773
 demand and fish prices, 491, 492
 Principles on Access to Genetic Resources and Benefit-sharing for Participating Institutions, 291
 Privatization of fresh water, 193–194
 Productivity changes, 55–56, 57
coastal systems and, 516, 516
labor productivity and nutrition, 236–237
Property rights
agriculture and, 771, 780, 783
dryland systems and land tenure policies, 649
forests, private vs. public ownership, 247, 247
intellectual property rights, 290
island systems and, 674
mountain systems, 706–708, 707–708
polar systems and, 734
Protected areas
forests, 602, 602
marine. See Marine protected areas (MPAs)
mountain systems, 708, 708–709
polar systems, 734, 738
Provisioning services. See also specific type of service
biodiversity and, 2
defined, 29
demand increasing for, 4, 831–834
dryland systems and, 631–633
fire regulation changes affecting, 449
fresh water. See Fresh water
trade-offs. See Trade-offs
trends in human use of, 6, 7–8, 11–13
Public participation in decision-making, 32
Rabies, 406, 408
Rainfall. See also Climate change
acid rain, 375
agricultural rain-fed systems, 750
dryland systems and, 631
silviculture and rain-fed horticulture, 642
fire incidence and, 451
forests and, 612
mountain systems and, 689
tropical forests, impacts in, 173
Ramssur Convention on Wetlands, 26, 541, 554, 574, 575
Rangelands
dryland systems and, 640–641, 641
mountain systems and, 694–696
Rattan. See Bamboos and rattans
Recreation, 469–472. See also Tourism
coastal systems and, 532–533
dryland systems and, 634, 643–644
forests and, 607
inland water systems and, 558–559
polar systems and, 737–738
Recreational fishing, 499, 533
Recycling, 810
Red List. See IUCN Red List of Threatened Species
Reducing Disaster Risk: A Challenge for Development (UNEP), 150
Reforestation, defined, 597
Registry of Toxic Effects of Chemical Substances, 420
Regulating services
biodiversity and, 2, 307–319
defined, 29
dryland systems and, 630–631
fire regulation changes affecting, 449
fires and floods, 444–446
ecosystem changes on capacity to provide, 446–449, 860
trade-offs. See Trade-offs
trends in, 8–9, 13–14, 307–319
Remote sensing, 40–44
cultivated systems and, 755
desertification and, 638
forest extent and, 593, 598
natural disasters and, 445
Reptiles
geographical patterns of extinction, 109
inland water systems and, 564
recent population trends in, 102
Research and development
agricultural research and development, 226, 227
private vs. public research, 773–774, 785
critical needs, 836–837, 838
Resettlement and water transfers, 185
Resilience, 147–148
Rice
consumption of and food security, 558
irrigation and infectious diseases, 399, 399–400
methane emissions and, 769
urbanization and, 809
Rift Valley Fever, 401–402
Risk assessment, 35
Risk maps, 149
River blindness (onchocerciasis), 403
Rivers and lakes. See Inland water systems
Roads
deforestation and, 609
mountain systems and, 705
Rock and shell reefs, mud flats, coastal seamounts, and
rises, 524
Rodent-borne hemorrhagic viruses, 400
Rural area. See also Agriculture
dispersal and dryland systems, 631
Sugar cane and sorghum, 628–629
Russia
inland water systems and, 566
forests in, 589, 590, 591, 606, 614
recent major fires, 381
Sacred groves, species, and places, 27, 463, 465–466, 559, 607, 633, 705
Sahara. See Africa
Sahelian region. See Africa
Salinization, 435–436, 436–437, 557
Salmon, 528
Salmon anemia, 98
Salt ponds, 518–521, 519–520, 510
Sanitation, 852. See also Wastes; Water pollution
urbanization and, 812–813, 813, 821
Sarawak-Medichem Pharmaceuticals, 287
SARS (severe acute respiratory syndrome), 407, 833
Scavenging and wastes, 429
Scenario-building, 35
Schistosomiasis, 398–399, 577, 785, 834
Science and technology drivers, 75–76
for fires, 451
Sea level rise and island systems, 676, 676
Sea urchins, 524
Seagrass beds or meadows, 523, 530, 868
Security and human well-being. See Human well-being
Sediments
coastal systems, loads into, 529
inland water systems, retention of, 556–557
mountain systems, retention of, 697
Seeds, 280–281, 281, 314
dispersal and dryland systems, 631
Sequestration of wastes, 427–428
Sewage. See Wastes
Sharks, 103
Shatoosh, 266
Shifting cultivation, 750–751
Shrimp in Thailand, 537, 538
Silicon, 337
Slash-and-burn agriculture, 750–751
Slovenia and karst, 561
Slums and squatter settlements, 818
Snakes, freshwater, 564
Social impacts of timber extraction, 254–255
Social issues
air quality and, 381
climate change and, 379–380
drylands and, 654
human well-being and, 30, 126
sensitivity to ecosystem change, 139
Socioeconomic data, 47–48
Socioeconomy in mountain systems, 699–706
Sociopolitical drivers of change, 74–75
for agriculture, 771–772
for dryland systems, 648–650
for fires, 451
public participation in decision-making and, 32
Soil biodiversity, 759
Soil erosion, 338–339, 339, 603
agriculture and, 778–779
forests and, 603
mountain systems and, 697
Soil formation and conservation
dryland systems, 628–629
mountain systems, 696
technologies to improve, 774
South Africa
salinization in, 436
water legislation in, 178
water pricing and access of the poor, 194
South America. See Latin America
Southern Africa
environmental stress in, 159–161
fuelwood supply analysis in, 258
Species
changes in composition of, 2–3, 87–92
concentration in certain geographical areas, 3
definition and measurement, 87–88
direct and indirect interactions between, 309–315
domesticated species of food, 213–219
extinction. See Biodiversity
geographic centers of endemism and evolutionary
distinctiveness, 90–92, 92
inland water systems, 561–562, 561–566
marine fisheries, diversity of, 489
number of, 3, 88, 90
current global protected area network and, 93
variations in richness in time and space, 88, 89–91, 90
Spiritual services, 462–465, 533, 633
Sri Lanka. See also Asia
mosquito-borne diseases and irrigation, 399
Stakeholders
importance of, 28
participation of, 32
State of the World’s Fisheries and Aquaculture, The (FAO), 102–103
Stockholm Convention on Persistent Organic
Pollutants, 432
Stratospheric ozone, 375, 731
Sturgeon, 103
Subsidies
agriculture, 226–228, 771
deforestation, 609
marine fisheries, 490–491, 495, 499, 505
Substitutions, feasibility of, 32
Sulfur, 342–344, 343, 369, 611, 837
Supporting services
biodiversity and, 301–307
dryland systems and, 628–629
fire regulation changes affecting, 449
primary productivity, 301–307
trade-offs. See Trade-offs
trends in, 10, 14
Surface albedo, 371, 373–374, 859
Surprises caused by complex interactions, 304, 305–306
Sustainability, 20–22, 22, 27, 32
components of, 152
forests, 253–254, 589
fuelwood, 265–266
landscape management for, 473, 473
marine fisheries, 502–503, 505–506
mountain systems, 711–712
timber, 265–266
urban areas, 809, 817–818
Sustainable Fisheries Act (U.S.), 506
Svalbard Treaty (1920), 734
Swidden agriculture, 750–751
Swiss Reinsurance Company study on catastrophe
losses, 447
Syndromes approach, 148
System boundary definitions, 66

T
Teak, 252, 590, 595, 600
Technological advances and urbanization, 820
Technology. See also Science and technology drivers
agriculture, 773–774
bamboos and rattans, development and substitution, 257
dryland systems and adaptation of new technologies, 655–656
harvesting timber, 253
marine fisheries, 491
Timber, 7, 11–12, 247–255. See also Forests
carbon sequestration in wood products, 252
consumption, 249
craft wood, 251–252
deforestation and, 254, 608
drivers of change in production and consumption, 252–254
employment in forest products industry, 249
gineered wood products and utilization
technology, 253
environmental impacts of extraction, 254
future availability, 249–251
global energy sources and costs, 253
globalization and, 252
illegal logging, 248
industrial roundwood, 247, 247–251
industrial wood residues, 260
mechanization of harvesting, 253
plantations, 248–249, 253, 604
political and economic change, impact of, 254
social impacts of extraction, 254–255
supply shifting, 252–253
sustainability of, 265–266
trade, 249, 250
wood pulp, 251, 251
Time scale of assessments. See Temporal scope of assessment
Tourism, 469–472, 471. See also Ecotourism
coastal systems and, 530, 532–533
economic importance of, 470, 471
forests and, 607
inland water systems and, 558–559
island systems and, 18, 670–672, 671
marine tourism, 499
mountain systems and, 702, 703
Trade
agricultural policy, 226–228, 785
subsidies and import tariffs, 226–228, 771
agriculture policy and, 785
bamboos and rattans, 256
driver of change, 5
fish export and import, 496–497
island systems and, 675
liberalization and food preferences, 226
mountain systems and, 702
timber, 249, 250
trade-offs, 827–838
agriculture, 776–777, 778, 781–782
air quality, 832–833
Arctic, between industrial development and cultural
resources, 733
between ecosystem services, 4, 6, 21–22, 63–64, 63–65, 322, 831–834
biodiversity, 834
climate change, 832–833
coastal systems, 536, 537–540
dryland systems, 651–653
fresh water use, 197–199, 200
infectious diseases, 395, 833–834
inland water systems, 573–575
marine fisheries, 492–497, 493
unintentional trade-offs, 497–498
mountain systems, 709–711
nutrient cycling, 833
polar systems, 731–734, 732
Trade-Related Aspects of Intellectual Property Rights
(TRIPS), 290
Traditional and local knowledge. See Knowledge
TRAFFIC Southeast Asia, 102
Transportation, 371, 372
Transport processes for wastes, 428–429
Transportation. See also Roads
Arctic off-road travel, 733, 733
island systems and, 674–675
mountain systems and, 703
Travel cost, 57
Trees. See Forests; Timber
TRIPS. See Trade-Related Aspects of Intellectual Property Rights
Tropical forests
biochemical and biophysical interactions in, 370, 372–373
biomass burning and, 376
climate change and, 613
conservation efforts, 471
deforestation, 602, 614
direct drivers of, 607–609, 608
indirect drivers of, 609, 610
rainfall impacts and, 373
drivers of change in, 607–609
ecosystem services provided by, 608
extent of, 594, 594
extinction risk and, 3, 107
flooding and, 450
indigenous territories, 611
infectious diseases and, 402–403
regeneration of, 589
resilience in preventing infectious diseases, 397
seed dispersal and, 314
Tropospheric ozone, 369, 375, 376
Tsche flies, 400
Tsunamis, 675
Turtles and tortoises, 102, 525–526, 564

U
U.K. Commission on Intellectual Property Rights, 290
Uncertainty, 22, 171
UNCLOS (United Nations Convention on the Law of
the Sea), 504, 505, 506, 541
UNEP. See United Nations Environment Programme
UNESCO
Biome Reserves, 709
on islands and traditional ecological knowledge, 670
World Heritage Centre, 472
World Heritage Sites, 709
United Nations. See also Millennium Development Goals
Commission on Sustainable Development, 706
Conference on Environment and Development (1992), 588
Fish Stock Agreement (1995), 504
forest initiatives of, 588, 600
Land Degradation Assessment in Drylands, 637
on freshwater supply, 177
Population Division statistics on urbanization, 804
Regional Seas Programme, 504
on vulnerability, 150
Forest Division, 602
Forest Protection, 588, 600
Fish Stock Agreement (1995), 504
on freshwater supply, 177
Forest initiatives of, 588, 600
Fish Stock Agreement (1995), 504
on freshwater supply, 177
Food shortage. See also Latin America mining and malaria, 404
Virtual water, 185, 186–187, 853
defined, 187
Viruses. See Infectious diseases
Vitamin A, 232
Volatile organic compounds, 363, 376
Vulnerability, 143–164
assessment of, 149–151
country scores, 153
case studies, 157–162
Argentina, 157–159, 158
Bundelkhand, India, 161–162, 162
Southern Africa, 159–161
coastal systems, 517, 530
conceptual framework for analyzing, 146–147, 147
defined, 146
desertification and, 154, 155
food insecurity. See Food shortage implications for assessment policy, 162
island systems, 677–678
marine fisheries, 502–503
methods and tools for analysis, 148–149
multiagent modeling, 148–149
risk maps, 149
syndromes approach, 148
mountain systems, 712, 712–713
natural disasters and, 151–155
resilience and. See Resilience
urbanization and, 154, 810
W
Warfare. See Conflicts and wars
Waste exposure, safe levels of, 429–430
Wastes, 417–439. See also Pollution
animal wastes, 767, 769
biological update and trophic-level concentration, 429
coastal systems and, 674, 876
crude oil consumption, 429
consumer household wastes, 431
damage caused by, 420–422
defined, 419
detoxification processes, 425–428, 426–428
development-related wastes, 423, 423–424
drivers of change in processing and detoxification, 430–431, 432–434
economic losses due to, 421–422
ecosystem ability to assimilate, 429–430
ecosystem ability to detoxify or use, 425–429
ecosystem damage and loss of diversity, 422
eutrophication, 437–438, 438
exposure, safe levels of, 429–430
global scale of, 425
hazardous materials, consumer-use, 431
human health damage caused by, 420–421
hydrocarbons, 435
incineration of, 428, 431
local management of, 424–425
management of, 424–425
microbial degradation, 425–426
national management of, 424, 425
partitioning and, 429
pathogen die-off, 426–427
persistent organic pollutants (POPs), 431, 434–435
photochemical degradation, 427
population-proportional wastes, 422–423
regulatory control of, 424
salinization, 435–436, 436–437
scavenging and, 429
sequestration of, 427–428
sewage treatment, 180
threshold differences for human health, ecosystem, and economic loss, 422
transport processes, 428–429
trends in, 422–424
types of, 420, 421
urbanization and, 422–423, 811
vehicle emissions, 424
wetlands and pollution abatement, 436–437, 557
Water hyacinth, 97, 557, 570
Water pollution, 179–180, 179–181, 420
agriculture and, 763, 785
Island Press Board of Directors

Victor M. Sher, Esq. (Chair), Sher & Leff, San Francisco, CA

Dane A. Nichols (Vice-Chair), Washington, DC

Carolyn Peachey (Secretary), Campbell, Peachey & Associates, Washington, DC

Drummond Pike (Treasurer), President, The Tides Foundation, San Francisco, CA

Robert E. Baensch, Director, Center for Publishing, New York University, New York, NY

David C. Cole, President, Aquaterra, Inc., Washington, VA

Catherine M. Conover, Quercus LLC, Washington, DC

Merloyd Ludington, Merloyd Lawrence Inc., Boston, MA

William H. Meadows, President, The Wilderness Society, Washington, DC

Henry Reath, Princeton, NJ

Will Rogers, President, The Trust for Public Land, San Francisco, CA

Alexis G. Sant, Trustee and Treasurer, Summit Foundation, Washington, DC

Charles C. Savitt, President, Island Press, Washington, DC

Susan E. Sechler, Senior Advisor, The German Marshall Fund, Washington, DC

Peter R. Stein, General Partner, LTC Conservation Advisory Services, The Lyme Timber Company, Hanover, NH

Diana Wall, Ph.D., Director and Professor, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO

Wren Wirth, Washington, DC