Index

Italic page numbers refer to figures, tables, and boxes.
Bold page numbers refer to the Summary.

A
Accounts, 188, 189
Aesthetic values, 57, 59
human well-being and, 77
Affluence as factor of consumption, 88–89, 97
Africa. See also Developing countries
energy, 28
fisheries, 28
life expectancy in, 98
water needs, 79
Agriculture
climate change and, 97
cultivated reporting category, 11, 55
degradation of land, 4, 30, 64
economics and, 28
fertilizer use, 14, 15, 16–17
grazing animals, effect of increase in, 68
subsidies, effect of, 82
sustainable use and production condition, 64
Air quality, 57, 77, 104
indirect use values and, 133
Analytical approaches, 20–23, 41, 148–177
assessment of historical trends and current state of ecosystems and drivers, 150–151
Bayesian paradigm, 175–176
boundaries of ecosystems, 12, 159–161
data for, 20–21, 152–157. See also Data sets
decision analytical frameworks (DAFs), 24, 195–200, 196
evaluation of possible responses, 151. See also Interventions and decision-making
human well-being and, 151
selection of indicators, 150
identification of categories of ecosystems and their services, 150
identification of direct and indirect drivers, 150
identification of links between services and human societies, 150, 156
major tasks of, 149, 149–152
modeling issues, 21–22, 162–165
for scenario analysis, 171–173
reporting units, 162
review and validation procedures, 174
scale selection and, 151–152, 160, 173–174
scenario analysis, 22–23, 151, 166–173. See also Scenario analysis
selection of indicators, 150, 158–159
uncertainty analysis, 23, 151, 175–177
units of analysis and reporting, 159–162
Annan, Kofi, 1, 48
Aquatic Ecosystem Health and Management Society, 69
Archive for data, 154, 157–158
Assessments used in decision-making cycle, 188, 189. See also Analytical approaches

B
Bayesian paradigm, 175–176
Behavioral decision theory, 196
Benefits transfer, 135–136
Biases, minimization of, 45–47
Biochemicals, 57, 57
Biodiversity, 8–10, 51
defined, 8
ecosystem services and changes in, 60–62, 103
importance of, 10, 77
intrinsic value of, 144
loss of species and, 61–62
substitutability of species, 61–62
Biogeochemistry models, 163
Biological control, 58
Biological drivers of ecosystem change, 16, 103–104
Biomass
as scale-independent variable, 112–113
fuel, 28, 56, 57
Biosphere, 72
Birth rate, 98. See also Population fluctuations
Black market, 144
Boundaries of ecosystems, 12, 51, 159–161, 160
multiscale assessment and, 124–126
C
Canada and cod fishing, 65
Carbon dioxide, 119–120
Carbon emissions, 30. See also Climate change
Catastrophic change, 68
Categories of ecosystems, 38, 50–53, 54–55. See also Ecosystem services
identification of, 150
reporting categories, 8, 10–11, 54–55
CBD. See Convention on Biological Diversity
Change in ecosystems. See Drivers of change
Chemical drivers of ecosystem change, 16, 103–104
Chipko (tree hugger) movement, 119
Climate change, 4, 28, 68
agriculture and, 97
as driver of ecosystem change, 4, 104
scale issues and, 18, 120
variability and ecosystem services, 68
Climate models, 164
scale issues, 173
scenario analysis, 172
Climate regulation, 14, 57, 58, 77
Coastal reporting category, 10, 54
Cod fishery, collapse of, 65
Computable general equilibrium (CGE) models, 165
Conceptual framework of ecosystem assessment, 2–3, 7–19, 9, 34–43, 37, 52
analytical approaches, 41. See also Analytical approaches
biases, minimization of, 45–47
categories of ecosystem services, 38, 54–55. See also Categories of ecosystems
change, factors for, 38–39. See also Drivers of change
human well-being as focus of, 38, 52. See also Human well-being
interrelationships of issues, 37
interventions and decision-making, 41–42, 178–195. See also Interventions and decision-making
multiscale structure and sub-global components, 39–40, 40, 43–44. See also Multiscale assessment
need for agreement on, 34
overarching questions guiding design, 35, 36, 173–177
types of knowledge assessed, 44–45
valuation issues, 41. See also Valuation of ecosystems
Condition and Trends Working Group, 43, 152, 161
Conservation value, 133
Consumptive use of ecosystem services, 133
affluence as factor, 88–89, 97
Convention on Biological Diversity (CBD), 2, 10, 44, 46, 52, 162
on definition of ecosystem, 51, 52
Convention on Long-Range Transboundary Air Pollution, 189
Convention on Migratory Species, 2, 46
Convention to Combat Desertification, 2, 46, 162
Core data sets, 152–153
Cost-benefit analysis, 196
Cost-effectiveness analysis, 196
Cross-scale interactions, 17–19, 110–111, 124
Cultivated land. See also Agriculture
reporting category, 11, 55
Cultural diversity, 58
Cultural services, 8, 57, 58–59
human well-being and, 77
sustainable use and, 65–66
valuation related to, 133
Cultural values, 19, 57, 59, 128–129, 139–146
as drivers of ecosystem change, 16, 102–103
group contingent valuation (CV), 140

D
DAFs. See Decision analytical frameworks
Data sets, 20–21, 152–157
archive for, 154, 157–158
challenges in using, 154–157
core data sets, 152–153
for summaries and synthesis reports, 153
indicator selection, 158–159
local knowledge. See Traditional knowledge, use of
metadata, 153–154
new data sets, 153
quality assurance, 157–158
reliability of, 155
reports to use, 153
sources of data, 157–158
traditional knowledge. See Traditional knowledge, use of
types of bias, 155
unpublished information, use and validation of, 156–157, 174
Decentralized political decision-making, 100
Decision analytical frameworks (DAFs), 24, 195–200, 196
Decision-making. See Interventions and decision-making
Definition of ecosystem, 3, 51
Deliberation, 193
Demographic drivers. See Population fluctuations
Developing countries
collision of traditional societies and ecosystems, 198–199
data collection issues, 155
decision-making process in, 197
economic factors and, 99
ergy, 28
fisheries, 28
megacities in, 97
population growth in, 96
water shortage and dam construction, 79
Direct use values, 133
Direct vs. indirect drivers, 15, 16, 87, 87, 92, 92, 150
Disease regulation, 57, 58, 77
Driver-Pressure-State-Impact Response (DPSIR), 89
Drivers of change, 15–17, 38–39, 85–106
assessment of change in value, 137–139, 138
consequences of decisions outside of ecosystem, 94–96
cultural and religious values as, 16, 102–103
decision-making process and, 91–94
defined, 15, 86–87
demographic drivers, 16, 96–98
economic drivers, 16, 98–99
effect on human well-being, 73
endogenous vs. exogenous drivers, 15, 16, 87–88, 91, 92, 92, 93, 95–96
forecasting change, 167. See also Scenario analysis
global drivers, 90–91, 106
indirect vs. direct drivers, 15, 16, 87, 87, 92, 92, 150
integrated assessment and, 90
interactions among, 16–17, 104–106
IPAT formulation for change factors
(impacts = population x affluence x technology), 88
overview of, 90–91
physical, biological, and chemical drivers, 103–104
previous approaches to study of, 88–90
public sector decisions and, 94–96
scenario analysis and, 169
scientific and technological drivers, 16, 100–102
selection for analysis, 150, 158–159
sequences of events leading up to change, 106
sociopolitical drivers, 16, 99–100
synergetic interactions among, 105
typologies of, 87, 87
Dryland reporting category, 11, 55

E
Eastern Europe and population decline, 97
Ecological footprint, 70
Economic drivers of ecosystem change, 4, 6, 16, 98–99
Economic impact of ecosystems, 27–28
human system models’ focus on, 165
valuation method. See Valuation of ecosystems
Ecosystem health, 69–70
Ecosystem services, 8–12, 53–60
assessment of historical trends and current state of, 150–151
biodiversity and, 60–62
categories of, 8, 56–60, 57
cultural services, 8, 57, 58–59
identification of, 150
multisectoral approach, 60, 61
provisioning services, 8, 56–57
regulating services, 8, 57, 57–58
supporting services, 8, 57, 59–60
changes in. See Drivers of change
defined, 3
institutions mediating use of, 82–83
linkages with human well-being, 76–79, 78
research on, 56
selection of indicators for analysis, 150, 158–159
stability in, 66–69, 67
substitution of services, 61–62, 70
Ecotourism. See Recreation and ecotourism
Educational values, 57, 59
environmental impact and, 97
human well-being and, 77
EEA. See European Environment Agency
EIA. See Environmental impact assessment
Endangered species, 6, 14, 144, 145–146
Endangered Species Act (ESA), 145–146
Endangered Species Committee, 146
Environmental impact assessment (EIA) compared to Millennium Ecosystem Assessment, 42
statements required prior to project development, 24, 194
Environmental laws, 8, 23
recognition of intrinsic value of, 144
 treaties, 185
Environmental system models, 21–22, 162–164
integrated models, 165
Erosion control, 14, 58
Ethical and cultural prescriptive rules, 196
European Environment Agency (EEA) decision-making framework of, 190
science assessments, 189
Exchange rates, 99
Existence value, 19, 133. See also Non-utilitarian values
Extent of ecosystems, 12, 159–161
actual versus potential, 159
modern transportation’s effect on, 159
varying boundaries of, 160
Externalities as consequences of decision-making, 16–17

F
Fire frequency, 117
Fisheries Centre of the University of British Columbia, 163
Fishery degradation, 4, 6, 28, 30, 63–64. See also Mangroves
cod fishery, collapse of, 65
Focus groups, 196
Food availability and needs, 29, 56, 57, 63. See also Agriculture
population levels and, 97
Forecasting, 167. See also Scenario analysis
Forests
cultural practices related to, 200
deforestation
as driver of ecosystem change, 104, 106
assessing change in value due to, 138
economic incentives for and against, 6–7
tradeoff with production of goods, 29
modeling, 163–164, 172
reporting category, 10, 54, 161
restoration, 30
scale issues, 173–174
time and space scales in, 115, 117
Framework. See Conceptual framework of ecosystem assessment
Freedom and human well-being
equitable social process and protections, 82–83
human system modeling, need to include, 165
human well-being and, 13
personal choice and, 74, 75, 75
Fresh water, 57, 57
resource models, 163, 172
Fuel and fuelwood, 28, 56, 57
Future priorities and trends. See also Scenario analysis
balancing with present priorities, 81–82, 139

G
Game theory, 196
Genetic resources, 57, 57
Global drivers of ecosystem change, 90–91, 106
Global Environmental Outlook (UNEP), 168, 168
Global warming. See Climate change
Goods, 56. See also Ecosystem services
Governmental decision-making, 185, 186
consequences of, 94–96
variability and, 66–69
Grazing animals, effect of increase in, 68
Group contingent valuation, 140

H
Health
human system modeling, need to include, 165
human well-being and, 13, 74, 75, 77
indirect use values and, 133
of ecosystem, 69–70
risks, 28. See also specific diseases
Hierarchy theory, 111, 118–119, 126
Household numbers and distribution, 98
Human rights and intrinsic value paradigm, 143.
See also Freedom and human well-being
Human system models, 22, 162, 164–165
integrated models, 165
Human well-being, 12–14, 71–83. See also
Poverty and the poor
as focus of ecosystem assessment, 38, 52
balancing present and future priorities, 81–82.
See also Scenario analysis
defined, 3
dependence on ecosystems, 50
evaluation of impact on, 151
freedom and choice and, 13, 74, 75, 76. See also Freedom and human well-being
health and, 13, 74, 75
institutions mediating use of ecosystem services, 82–83
key components of, 73–76, 75
linkages with ecosystem services, 5, 8, 76–79, 78, 128
data problems for assessing, 156
identification of, 150, 158–159
political units as factor, 161
materials for good life and, 13, 74, 75
security and, 13, 74, 75
selection of indicators for analysis, 150, 158–159
social relations and, 13, 74, 75, 76
substitutability and, 79–81

I
Indicator-based assessments, 188, 189, 190
Indicator selection, 150, 158–159, 191
global scenario projects, 171
Indirect use values, 135
Inertia in human and ecosystems, 14, 117–118
Inland water reporting category, 10, 54
Inspiration, 57, 58
Institutional fit and interplay in choice of scale, 124
Institutions
mediating use of ecosystem services, 82–83
sociopolitical decision-making by, 7, 100
Integrated models, 165
Integration across scales, 126
Intergovernmental Panel on Climate Change (IPCC), 42, 46, 89
data collection guidelines, 157
handling uncertainty, 175
science assessments, 189
Special Report on Emissions Scenarios, 168, 168
International Geosphere-Biosphere Programme, 159
International Monetary Fund, 99
International Society for Ecosystem Health (ISEH), 69
International trade
as driver of ecosystem change, 99
consequences of decision-making by trading communities, 94
International transfer of technologies and investments, 119
International treaties, 185
challenges for, 179–180
decentralized sociopolitical trends, 100
decision analytical frameworks (DAFs) and tools, 24, 195–200, 196
decision-making processes, 180–183
deliberation, defined, 193
ecosystem change and local decision-making process, 91–94, 92
externalities as consequences of, 16–17
knowledge's role in, 187–193
addressing users' concerns, 191
assembling accounts and assessments, 188, 189
forms of information, 191–192
interactive process, 187–188, 188
local decision-making, 183, 187
measurement and, 25, 187–188, 188
national-level decision-making, 185, 186
precautionary principle, 194
response options and strategic interventions, 3, 183–187
risk and uncertainty, dealing with, 24, 193–195, 198
thresholds of irreversibility and, 24, 120
treaties and conventions, 185
types of interventions, 183
valuation of ecosystem services as factor, 6, 186–187
Intrinsic value paradigm, 6, 19, 140–146
IPAT formulation for change
(IPacts = Population x Affluence x Technology), 88
IPCC. See Intergovernmental Panel on Climate Change
Irreversibility, thresholds of, 24, 120
ISEH (International Society for Ecosystem Health), 69
Island reporting category, 11, 55

K
Kant’s approach to value, 142–143, 144
Knowledge
scientific and technological knowledge, growth in, 100–102
systems, 58
traditional or local. See Traditional knowledge, use of
types of, used in Millennium Ecosystem Assessment, 22, 44–45
usable knowledge, 187–193
Kondratiev cycle related to technological change, 122
Kuznets cycles
related to environmental degradation and economic growth, 105
related to infrastructure development, 122

L
Land tenure
changes in, 30
characteristic scale of, 120
competition for, 106
economic rents and, 185
local ecosystems and, 81
types of and strategic interventions, 184
Legal consequences and assessing metric value, 144
Leopold, Aldo, 143
Life expectancy, 98
Lindeman, Raymond, 50
Livelihood sustainability, 76–77
Local communities. See also Regional and local interactions
assessment of, 111
decision-making by, 183, 187
drivers for change and, 89, 91–94, 92
effect on regional level, 94–95
empowerment of, 100
multiscale approach and, 43–44, 46
scale considerations and, 111, 120
substitutability and, 80

M
MA. See Millennium Ecosystem Assessment
Malaria, 28
Mangroves
determining ecological boundaries associated with, 160–161
removal, consequences of, 77, 79, 82
Marine ecosystems
modeling, 163
reporting category, 10, 54
resource models, 163
Metadata, 153–154
Microorganisms, 50
Migration, effect on population distribution, 98
Millennium Development Goals (UN), 2, 32–33, 33
Millennium Ecosystem Assessment (MA)
creation and purpose of, 2, 27, 34
design of, 35, 36. See also Conceptual framework of ecosystem assessment
environmental impact assessment (EIA) compared to, 42
pressure-state-impact response (PSIR) compared, 42
Working Groups, 43. See also specific Working Groups
Minimum levels of ecological stock. See Security
Modeling, 21–22, 162–165
biogeochemistry models, 163
climate models, 164
computable general equilibrium (CGE), 165
environmental system models, 21–22, 162–164
for scenario analysis, 171–173
household, 165
human system models, 22, 162, 164–165
integrated models, 165
marine, 163
multiscale assessment and, 172
scenario analysis and, 167
sectoral, 165
terrestrial ecosystems, 163–164
Monitoring and evaluation, 25, 187, 188, 190
Mountain reporting category, 11, 55
See also Scale issues
arguments for, 111–112, 112
choice of appropriate scales, resolutions, and boundaries, 124–126
cross-scale interactions, 17–19, 110–111, 124
guidance for, 124–126
integration across scales, 126
of integrated human-ecosystem interactions, 111
scenario modeling and, 172
strategic cyclical scaling, 126
sub-global components, 39–40, 40

Natural capital, determination of, 28–29
Natural drivers of ecosystem change, 16, 103–104
Nested hierarchies, 119
Network-related concepts, 119
NGOs and decision-making, 100, 186
Non-utilitarian values, 19, 20, 128, 133, 139–146
Nonnative species, introduction of, 104, 161
Nutrient cycling, 57

Observation scale, 108, 109
Odum, Eugene, 50
Option values, 133
Organisation for Economic Co-operation and Development (OECD)
Driver-Pressure-State-Impact Response (PSIR), 89
Organisms, 50
Ornamental resources, 57
Overarching issues, 35, 36, 173–177
scale issues, 173–174
Ozone Assessment, 42, 46

Passive use value, 133
Peer-review, 174
Pilot Analysis of Global Ecosystems, 64
Polar reporting category, 11, 55
Policy exercises, 196
Political units as analytical factor, 161
Politics of scale, 19, 122–124
Pollination, 57, 58
Population fluctuations

as driver of ecosystem change, 16, 91, 96–98
as factor of consumption change, 88
Portfolio theory, 196
Poverty and the poor, 12–14, 31–32
adverse ecosystem change and, 73
as deprivation of human well-being, 74
biodiversity's importance to, 77
defined, 74
dependence on ecosystem, 4, 6, 97
freedoms to allow self-determination by, 73
ill-being, dimensions of, 75
linkages to reduce, 79
social and personal factors determining, 74
Precautionary principle, 194
Predictability
effect of increasing, 68–69
scale, relation to, 110
Pressure-state-impact response (PSIR)
compared to Millennium Ecosystem Assessment, 42
Driver-Pressure-State-Impact Response (PSIR), 89
Primary production, 57
Private sector's interests
consequences of decision-making, 94
decision-making by codes and policies, 186
in improved ecosystems, 34
Productive base of society, 28–29, 29
Property tenure. See Land tenure
Provisioning services, 8, 56–57, 57
sustainable use and, 62, 63–64
valuation related to, 133
PSIR. See Pressure-state-impact response
Public finance theory, 196
Purpose of ecosystems, 27

Quality assurance of data, 157–158

Ramsar Convention on Wetlands, 2, 46
Real property tenure. See Land tenure
Recreation and ecotourism, 7, 57, 59
human well-being and, 77
nonconsumptive use of ecosystem services, 133
Regime shifts, 68
Regional and local interactions, 94
global scenario projects and, 171, 172
Regional development banks, 99
Regulating services, 57, 57–58
as response option, 185
biodiversity and, 77
sustainable use and, 64
valuation related to, 133
Religious values, 57, 58, 139–146
as drivers of ecosystem change, 16, 102–103
as protectors of ecosystems, 6, 199
human well-being and, 77
intrinsic value paradigm, 19, 140–143
Reports and reporting units, 159–162. See also
specific Working Groups
data for, 153
reporting categories, 10–11, 54–55
State of the Environment reports, 195
Resilience
choice of scale related to, 117, 118, 123
sustainable use and, 68
Resilience Alliance, 126
Responses, evaluation of, 151
Responses Working Group, 43, 152
Restoration of ecosystems, 30
Review Board, 174
Rio Declaration (1992) precautionary principle, 194
Risk assessment, 24, 193–195
Rural vs. urban areas, 4

S
Scale issues, 107–126, 173–174. See also
Multiscale assessment
analytical approaches and, 151–152, 160, 173–174
changing scales, 112–114
characteristic scales in time and space, 115, 116
choice of time scales, 18–19, 123
commonly used institutional levels and ecological scales, 120, 121
conversion to common metric, 113–114, 115
cross-scale interactions, 17–19, 110–111, 124
defined, 108–110
downsampling, 114, 115, 121
hierarchy theory and, 111, 118–119, 126
importance of, 110–112
in ecological and human systems, 17–19, 119–122
inertia in human and ecosystems, 14, 117–118
institutional fit and interplay, 124
level, defined, 108
non-scalable variables, 113
observation scale, 108, 109
extent, 108
gain, 108
resolution, 108
phenomenon, scale of, 108
politics of, 19, 122–124
relation to variability and predictability, 110
scale-dependent variables, 113
scale-independent variables, 112
“scale of observation” vs. “scale of the phenomenon,” 108
socioeconomic time scales, 18, 120
space and time domains (scale domain of the process), 17, 114–117
space for time substitution, 117
strategic cyclical scaling, 126
upsampling, 114, 115, 120
usable knowledge and, 191
viewing in context, 118–119
Scenario analysis, 22–23, 151, 152, 166–173
background of, 167–168
exploratory versus anticipatory, 168
forecasting, 167
global projects, 168, 169, 170–171, 171
intergenerational considerations, 7, 139
MA approach to, 169–171
matching with previous scenario exercises, 171, 172
qualitative versus quantitative, 168–169
types of, 167–169
zero-order storylines derived from previous global scenario exercises, 170, 171
Scenarios Working Group, 43, 152, 166
objectives of, 169–170
Science assessments, 188, 189
Scientific drivers of ecosystem change, 100–102
Sea level, global rise in, 104
time scale and, 118
Security
human system modeling, need to include, 165
human well-being and, 13, 74, 75, 75, 83
Sense of place, 57, 59
Simulation-gaming, 196
Social relations, 59
 human well-being and, 13, 74, 75, 75
 space-time domains in, 117
Sociocultural perspective. See Cultural values
Socioeconomics
 decision-making and, 197, 198
time scales, 18, 120
Sociopolitical drivers of ecosystem change, 16, 99–100
Soil formation, 57
Spatial assessments, 188, 189. See also Scale issues
Special Report on Emissions Scenarios (IPCC), 168, 168
Species. See also Endangered species
effect of losses of, 61–62
 popular species and bias in collection of data, 155
Spiritual values. See Religious values
Stability in ecosystem services, 67. See also Variability
State of the Environment reports, 195
Stem-cell research, 145
Storm protection, 58
Strategic cyclical scaling, 126
Strategies for response. See Interventions and decision-making
Sub-global Working Group, 43
Substitutability, 14, 79–81
 of ecosystem services, 70
 of species, 61–62
Supporting services, 8, 57, 59–60
 human well-being and, 77
 sustainable use and, 66
 valuation related to, 133
Sustainable development, 2, 4, 14, 62–70
 conferences, initiatives, and reports showing commitment to, 31, 32–33
cultural services and, 65–66
defined, 63, 81
health of ecosystem and, 69–70
livelihood sustainability, 76–77
provisioning services and, 62, 63–64
regulating services and, 64
 supporting services and, 66
variability, resilience, and thresholds in services, 66–69, 67

T
Tansley, Arthur, 50, 51
Technological drivers of ecosystem change, 16, 100–102
Terrestrial carbon balance, 113
Terrestrial ecosystem resource models, 163–164
Timber. See Forests
Time. See Scale issues
Total economic value (TEV), 132–134
Trade. See International trade
Trade-offs, determinations of, 2, 4, 89, 90, 132, 179–180
scenario analysis and, 167
Traditional knowledge, use of, 22, 156–157, 174, 192, 200
Transportation, 113
Transportation's effect on determining boundaries of ecosystems, 161
Treaties, 185
Tree hugger movement, 119
Tropics and population growth, 97
Tropospheric ozone, 120

U
Uncertainty
 assessing and communicating about, 23, 151, 175–177
decision-making and, 24, 193–195, 198
United Nations
drivers of ecosystem change and, 7, 90
Environmental Programme's Global Environmental Outlook, 168, 168
Millennium Development Goals, 2, 32–33, 33
Unpublished information, use and validation of, 22, 156–157, 174, 192
Urban areas
growth, 97
 reporting category, 11, 55
rural vs., 4
U.S. Census Bureau projections of world population, 96
Utilitarianism, 19, 130, 142. See also Valuation of ecosystems

V
Valuation of ecosystems, 19–20, 21, 41, 127–147
 actual behavior used as basis for, 135
benefits transfer, 135–136

cultural values. See Cultural values
decision-making taking into account, 186–187
economic valuation methods, 132, 134–136, 135
 assessment of change in value, 137–139, 138
 intergenerational considerations, 7, 139
 motivations for, 130–132
 putting into practice, 136–139
 total economic value (TEV), 132–134
utilitarian approach, 19, 20, 130, 142
group contingent valuation (CV), 140
hypothesis behavior used as basis for, 135
interactions of political and market metrics, 143–146
intrinsic value paradigm, 6, 19, 140–146
Kant’s approach to value, 142–143, 144
non-use values, 19, 128, 133, 139–146
paradigms of value, 128–139
safe minimum standard (SMS), 146
sociocultural perspective, 128–129, 140
sustainable use and, 62–63
use values, 132–133
wellfare economics and, 134

Variability
 governmental and individual buffering against, 66–69, 67
 scale, relation to, 110

W

Water. See also Water quality
 inland water reporting category, 10, 54
 regulation, 57, 58, 77
 shortage, 79
Water quality, 57, 58, 104. See also Fresh water
 indirect use values and, 133
 substitutions for, 14
 tradeoff with production of goods, 29
U.S., 28
Well-being. See Human well-being
Wetlands
 intrinsic value of, 144, 145
 reporting category for, 10
Women’s status, 100
Working Groups, 43, 152
World Bank, 99
World Business Council on Sustainable Development (WBCSD), 168, 168
World Commission on Environment and Development, 81
World Summit on Sustainable Development (WSSD), 168
World Trade Organization, 99
World Water Commission’s World Water Vision Scenarios, 168, 168

Z

Zoning regulation, 95