Appendix A

Color Maps and Figures

Figure 6.3. Reporting Regions for the Global Modeling Results of the MA. The region labeled OECD does not correspond exactly with the actual member states of the OECD. Turkey, Mexico, and South Korea, member states of OECD, are reported here as part of the regions Northern Africa/Middle East, Latin America, and Asia, respectively. All countries in Central Europe are reported here as part of the OECD region. This reporting definition is used because regions have been aggregated from the regional definitions of the models used. IMAGE and WaterGAP models have used a slightly different definition. (Millennium Ecosystem Assessment)

Figure 7.5. Income per Person, per Capita (GNI) Average, 1999–2003. National income is converted to U.S. dollars using the World Bank Atlas method. U.S. dollar values are obtained from domestic currencies using a three-year weighted average of the exchange rate. (World Bank 2003)
Figure 7.6a. Average GDP per Capita Annual Growth Rate, 1990–2003

Figure 7.6b. Average GDP Annual Growth Rate, 1990–2003 (Based on data downloaded from the online World Bank database and reported in World Bank 2004.)
Figure 7.9. Metals Intensity of Use per Unit of GDP (PPP) as a Function of GDP (PPP) per Capita for 13 World Regions (Nakićenović et al. 2003). Metals include refined steel and MedAlloy (the sum of copper, lead, zinc, tin, and nickel). GDP here is measured in terms of purchasing power parities (PPP). The dashed curves are isolines that represent a constant per capita consumption of metals. The thick line indicates the inverse U-shaped curve that best describes the trends in the different regions as part of a global metal model. (Van Vuuren et al. 2000)

Figure 7.10. Energy Intensity Changes with Changes in per Capita Income for China, India, Japan, and United States. Historical data for the United States since 1800 are shown. Data are converted from domestic currencies using market exchange rates. (Nakićenovic et al. 1998)

Figure 7.11. Energy Intensity Changes over Time for China, India, Japan, and United States. Data are converted from domestic currencies using market exchange rates. (Nakićenovic et al. 1998)
Figure 7.13. Variations of the Earth’s Surface Temperature, 1000–2100. The temperature scale is a departure from the 1990 value. For 1000–1860: variations in average surface temperature of the Northern Hemisphere are shown (corresponding data from the Southern Hemisphere not available) reconstructed from proxy data (tree rings, corals, ice cores, and historical records). The line shows the 50-year average, the grey region the 96% confidence limit in the annual data. For 1860–2000: variations in observations of globally and annually averaged surface temperature from the instrumental record. The line shows the decadal average. For 2000–2100: scenarios and IS92a using a model with average climate sensitivity. The grey region marked “several models all IPCC SRES envelope” shows the range of results from the full range of 35 SRES scenarios in addition to those from a range of models with different climate sensitivities. (IPCC 2002)
Figure 7.14. Past and Future Carbon Dioxide Concentrations. Atmospheric carbon dioxide concentrations from year 1000 to 2000 are from ice core data and from direct atmospheric measurements over the past few decades. Projections of carbon dioxide concentrations for 2000 to 2100 are based on six illustrative IPCC SRES scenarios and IS92a (for comparison with the IPCC Second Assessment Report). (IPCC 2002)
Figure 7.15. Concentration of Greenhouse Gases (IPCC 2002)
Figure 7.16. Trends in Global Consumption of Nitrogen Fertilizers, 1961–2001 (IFA 2004)

The dip at the end of the 1980s is due to the economic disruptions accompanying the dissolution of the Soviet Union.

Figure 7.18. Trends in Global Consumption of Phosphate Fertilizer, 1961–2002 (IFA 2004)
Figure 7.22. An Overview of the Causative Patterns of Tropical Deforestation (Geist and Lambin 2002)

Figure 8.1. Prime Critical Uncertainties Distinguishing MA Scenarios
Figure 9.3. Global Energy Consumption in MA Scenarios (IMAGE 2.2)

Figure 9.5. Global Greenhouse Gas Emissions in MA Scenarios (IMAGE 2.2)
Figure 9.9. Exceeding of Acidification and Nitrogen Deposition Critical Loads in the Order from Strength and TechnoGarden Scenarios in 2050 (IMAGE 2.2)

Figure 9.12. Change in Precipitation in 2050 Compared with Current Climate under the Global Orchestration Scenario (IMAGE 2.2)
Figure 9.13. Causes of Concern in Third Assessment Report of the IPCC (IPCC 2001)
Figure 9.18. Land Use Patterns in Two Scenarios in 2050. The maps on the left indicate global cover in 2000 and 2050. The maps on the right indicate the cause of changes in land use between 2000 and 2050, including shifts in biome types as a result of climate change. (IMAGE 2.2)
Figure 9.20. Nitrogen Fertilizer Use under Different Scenarios

Figure 9.28. Crop Yield for the Order from Strength Scenario from 2000 to 2100. Red indicates a significant decrease; yellow for a stable yield; blue signifies a significant increase. (IMAGE 2.2)
Figure 10.10 Potential Plant-Species Diversity as Determined by Climate Patterns. Blue tones represent increases in diversity relative to present, and reddish tones represent decreases in diversity. Potential plant-species diversity represents diversity when ecosystems reach equilibrium with climate. (Millennium Ecosystem Assessment)
Figure 10.11. Species Richness of African Ticks in 2000, at a Resolution of 0.5 Degrees. This map is based on climate-driven estimates of species ranges for 73 of the approximately 240 African species. The numbers in the legend indicate the number of tick species by grid cell. Tick species richness is highest in East Africa, Kenya, and Tanzania. There are pockets of high diversity in the Eastern Highlands of Malawi and Zimbabwe, the Cape, and West Africa; the lowest species richness occurs in the desert areas.

Figure 10.12. Predicted Changes in Tick Species Richness (per one-half degree cell) in Africa by 2100 in MA Scenarios. The number on the legend indicates the number of species that are gained or lost from each grid cell relative to a 2000 baseline estimate.
Figure 10.13. Threat to Natural Ecosystems from Climate Change Following the Biome Approach in the IMAGE 2.2 Model in MA Scenarios
Figure 10.16. Nitrogen Deposition, Sensitivity, and Exceedance of Critical Loads for Order from Strength Scenario in 2050. In these maps for sensitivity, red tones indicate insensitive.
Figure 10.21. Change in Annual Water Availability in Global Orchestration Scenario in 2100. Numbers indicate the location of river basins in Figure 10.20. Shades from grey through red indicate regions that are drying.
Figure 11.1. Changes in Human Well-being and Socioecological Indicators for MA Scenarios, 2000-50. Each axis in the star diagrams on the left represents one of the five human well-being (HWB) components as defined by the MA Conceptual Framework. The area inside the pentagon represents HWB as a whole. The '0' line represents the status of each of these components in 2000. If the yellow line moves more toward the center of the pentagon, this HWB component deteriorates in relative terms between today and 2050; if it moves toward the outer edges of the pentagon it improves. The diagrams on the right show the changes for three indicators representing socioecological variables. The '0' line represents the current status. If the green line moves toward the center of the triangle, the status of the indicator deteriorates in relative terms compared with today; if it moves more toward the outer edges of the triangle it improves.
Figure 11.2. Changes in Currently Industrialized and Developing Countries for Human Well-being Indicators for MA Scenarios, Today–2050. Each axis in the star diagrams on the left represents one of the five human well-being (HWB) components as defined by the MA Conceptual Framework. The area marked by the lines between the arrows represents HWB as a whole. The '0' line represents the status of each of these components today. If the yellow line moves more toward the center of the pentagon, this HWB component deteriorates in relative terms between today and 2050; if it moves toward the outer edges of the pentagon HWB improves.
Appendix B

Authors

Argentina
Ana Parma, Centro Nacional Patagonico
Miguel Pascual, Centro Nacional Patagonico
Marina Gonzalez Polo, Universidad de Buenos Aires
Elda Tancredi, Lujan National University

Australia
Colin Butler, Australian National University
Steven Cork, CSIRO Australia and Land & Water Australia

Austria
Nebojsa Nakicenovic, International Institute for Applied Systems Analysis and Vienna University of Technology
Brian O’Neill, International Institute for Applied Systems Analysis

Brazil
Eduardo Mario Mendiondo, Universidade de São Paolo

Canada
Jacqueline Alder, University of British Columbia
William Wai Lung Cheung, University of British Columbia
Villy Christensen, University of British Columbia
Garry Peterson, McGill University
John Robinson, University of British Columbia
Marguerite A. Xenopoulos, Trent University

China
Shiming Ma, Chinese Academy of Agricultural Sciences

Germany
Joseph Alcamo, University of Kassel
Wolfgang Cramer, Potsdam Institute for Climate Impact Research
Martina Floerke, University of Kassel
Michael Märker, University of Potsdam
Gerhard Petschel-Held, Potsdam Institute for Climate Impact Research
Kerstin Schulze, University of Kassel
Volkmar Wolters, Justus-Liebig-University Giessen

Kenya
Willis Oluoch-Kosura, University of Nairobi

The Netherlands
Lex Bouwman, Netherlands Environment Assessment Agency (MNP/RIVM)
Bert de Vries, Netherlands Environment Assessment Agency (MNP/RIVM)
Bas Eickhout, Netherlands Environment Assessment Agency (MNP/RIVM)
Pavel Kabat, ALTEGRA Green World Research
Marja Spierenburg, Free University of Amsterdam
Detlef van Vuuren, Netherlands Environment Assessment Agency (MNP/RIVM)

New Zealand
Simon Hales, Wellington School of Medicine & Health Sciences

Portugal
Ines Gomes, Faculdade de Ciências da Universidade de Lisboa
Henrique Miguel Pereira, Faculdade de Ciências da Universidade de Lisboa
Cibele Queiroz, Faculdade de Ciências da Universidade de Lisboa

Russian Federation
Andrei Zaitsev, Institute for the Problems of Ecology and Evolution

Spain
Diana E. Marco, Estación Experimental del Zaidín, CSIC

Trinidad and Tobago
John R. B. Agard, University of the West Indies
Danielle Deane, The Hewlett Foundation

United Kingdom
Joanna House, University of Bristol
Andrew Stott, Department for Environment, Food and Rural Affairs
Paul Wilkinson, London School of Hygiene and Tropical Medicine

United States
T. Douglas Beard Jr., U.S. Geological Survey
Asmeret Asefaw Berhe, University of California-Berkeley
Elena M. Bennett, University of Wisconsin
Edward R. Carr, University of South Carolina
Kenneth G. Casman, University of Nebraska-Lincoln
Graeme S. Cumming, University of Florida
Ruth DeFries, University of Maryland
Robert Dickinson, Georgia Institute of Technology
Thomas Dietz, Michigan State University
Claudia Ringler, International Food Policy Research Institute
Mark Rosegrant, International Food Policy Research Institute
James A. Rusak, University of Wisconsin
Osvaldo E. Sala, Brown University
Kathryn Saterson, Duke University
B.L. Turner II, Clark University
Diana Wall, Colorado State University
Robert Watson, The World Bank

Venezuela
Jon Paul Rodriguez, Instituto Venezolano de Investigaciones Científicas

Zambia
Michael Mutale, Department of Water Affairs

International Organizations
Carlos Corvalan, World Health Organization
Jacqueline McGlade, European Environment Agency
Prabhu L. Pingali, Food and Agriculture Organization of the UN
Teresa Ribeiro, European Environment Agency
Monika B. Zurek, Food and Agriculture Organization of the UN
Appendix C
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Aridity index</td>
</tr>
<tr>
<td>AKRSP</td>
<td>Aga Khan Rural Support Programme</td>
</tr>
<tr>
<td>AMF</td>
<td>Arbuscular mycorrhizal fungi</td>
</tr>
<tr>
<td>ASB</td>
<td>Alternatives to slash-and-burn</td>
</tr>
<tr>
<td>ASOMPH</td>
<td>Asian Symposium on Medicinal Plants, Spices and Other Natural Products</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced very high resolution radiometer</td>
</tr>
<tr>
<td>BCA</td>
<td>Benefit-cost analysis</td>
</tr>
<tr>
<td>BGP</td>
<td>Biogeochemical Province</td>
</tr>
<tr>
<td>BII</td>
<td>Biodiversity Intactness Index</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BNF</td>
<td>Biological nitrogen fixation</td>
</tr>
<tr>
<td>BOOT</td>
<td>Build-own-operate-transfer</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit (Brazil)</td>
</tr>
<tr>
<td>BSE</td>
<td>Bovine spongiform encephalopathy</td>
</tr>
<tr>
<td>Bt</td>
<td>Bacillus thuringiensis</td>
</tr>
<tr>
<td>C&I</td>
<td>Criteria and indicators</td>
</tr>
<tr>
<td>CAFO</td>
<td>Concentrated animal feeding operations</td>
</tr>
<tr>
<td>CAP</td>
<td>Common Agricultural Policy (of the European Union)</td>
</tr>
<tr>
<td>CAREC</td>
<td>Central Asia Regional Environment Centre</td>
</tr>
<tr>
<td>CBA</td>
<td>Cost-benefit analysis</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CBO</td>
<td>Community-based organization</td>
</tr>
<tr>
<td>CCAMLR</td>
<td>Commission for the Conservation of Antarctic Marine Living Resources</td>
</tr>
<tr>
<td>CCN</td>
<td>Cloud condensation nuclei</td>
</tr>
<tr>
<td>CCS</td>
<td>CO₂ capture and storage</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CEA</td>
<td>Cost-effectiveness analysis</td>
</tr>
<tr>
<td>CENICAFE</td>
<td>Centro Nacional de Investigaciones de Café (Colombia)</td>
</tr>
<tr>
<td>CFCs</td>
<td>Chlorofluorocarbons</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Consultative Group on International Agricultural Research</td>
</tr>
<tr>
<td>CIFOR</td>
<td>Center for International Forestry Research</td>
</tr>
<tr>
<td>CITES</td>
<td>Convention on International Trade in Endangered Species of Wild Fauna and Flora</td>
</tr>
<tr>
<td>CMS</td>
<td>Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention)</td>
</tr>
<tr>
<td>CONICET</td>
<td>Consejo de Investigaciones Científicas y Técnicas (Argentina)</td>
</tr>
<tr>
<td>COP</td>
<td>Conference of the Parties (of treaties)</td>
</tr>
<tr>
<td>CPF</td>
<td>Collaborative Partnership on Forests</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council for Scientific and Industrial Research (South Africa)</td>
</tr>
<tr>
<td>CV</td>
<td>Contingent valuation</td>
</tr>
<tr>
<td>CVM</td>
<td>Contingent valuation method</td>
</tr>
<tr>
<td>CVM</td>
<td>Contingent valuation method</td>
</tr>
<tr>
<td>DAF</td>
<td>Decision analytical framework</td>
</tr>
<tr>
<td>DALY</td>
<td>Disability-adjusted life year</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichloro diphenyl trichloroethane</td>
</tr>
<tr>
<td>DES</td>
<td>Dietary energy supply</td>
</tr>
<tr>
<td>DHF</td>
<td>Dengue hemorrhagic fever</td>
</tr>
<tr>
<td>DHS</td>
<td>Demographic and health surveys</td>
</tr>
<tr>
<td>DMS</td>
<td>Dimethyl sulfide</td>
</tr>
<tr>
<td>DPSEEAA</td>
<td>Driving forces-pressure-state-exposure-effect-action</td>
</tr>
<tr>
<td>DPSIR</td>
<td>Driver-pressure-state-impact-response</td>
</tr>
<tr>
<td>DSF</td>
<td>Dust storm frequency</td>
</tr>
<tr>
<td>DU</td>
<td>Dobson Units</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive economic zone</td>
</tr>
<tr>
<td>EGS</td>
<td>Ecosystem global scenario</td>
</tr>
<tr>
<td>EHI</td>
<td>Environmental health indicator</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental impact assessment</td>
</tr>
<tr>
<td>EID</td>
<td>Emerging infectious disease</td>
</tr>
<tr>
<td>EKC</td>
<td>Environmental Kuznets Curve</td>
</tr>
<tr>
<td>EMF</td>
<td>Ectomycorrhizal fungi</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>E/MSY</td>
<td>extinctions per million species per year</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño/Southern Oscillation</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (United States)</td>
</tr>
<tr>
<td>EPI</td>
<td>environmental policy integration</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EU ETS</td>
<td>European Union Emissions Trading System</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization (United Nations)</td>
</tr>
<tr>
<td>FAPRI</td>
<td>Food and Agriculture Policy Research Institute</td>
</tr>
<tr>
<td>FLEG</td>
<td>Forest Law Enforcement, Governance, and Trade</td>
</tr>
<tr>
<td>FRA</td>
<td>Forest Resources Assessment</td>
</tr>
<tr>
<td>FSC</td>
<td>Forest Stewardship Council</td>
</tr>
<tr>
<td>GATS</td>
<td>General Agreement on Tariffs and Trade</td>
</tr>
<tr>
<td>GATT</td>
<td>General Agreement on Tariffs and Trade</td>
</tr>
<tr>
<td>GCM</td>
<td>general circulation model</td>
</tr>
<tr>
<td>GDI</td>
<td>Gender-related Development Index</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environment Facility</td>
</tr>
<tr>
<td>GEO</td>
<td>Global Environment Outlook</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gases</td>
</tr>
<tr>
<td>GIS</td>
<td>geographic information system</td>
</tr>
<tr>
<td>GIWA</td>
<td>Global International Waters Assessment</td>
</tr>
<tr>
<td>GLASOD</td>
<td>Global Assessment of Soil Degradation</td>
</tr>
<tr>
<td>GLC</td>
<td>Global Land Cover</td>
</tr>
<tr>
<td>GLOF</td>
<td>Glacier Outburst Flood</td>
</tr>
<tr>
<td>GM</td>
<td>genetic modification</td>
</tr>
<tr>
<td>GMO</td>
<td>genetically modified organism</td>
</tr>
<tr>
<td>GNI</td>
<td>gross national income</td>
</tr>
<tr>
<td>GNP</td>
<td>gross national product</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GRoWI</td>
<td>Global Review of Wetland Resources and Priorities for Wetland Inventory</td>
</tr>
<tr>
<td>GSG</td>
<td>Global Scenarios Group</td>
</tr>
<tr>
<td>GSPC</td>
<td>Global Strategy for Plant Conservation</td>
</tr>
<tr>
<td>GtC-eq</td>
<td>gigatons of carbon equivalent</td>
</tr>
<tr>
<td>GWP</td>
<td>global warming potential</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>HIA</td>
<td>health impact assessment</td>
</tr>
<tr>
<td>HIPC</td>
<td>heavily indebted poor countries</td>
</tr>
<tr>
<td>HPI</td>
<td>Human Poverty Index</td>
</tr>
<tr>
<td>HPS</td>
<td>hantavirus pulmonary syndrome</td>
</tr>
<tr>
<td>HWB</td>
<td>human well-being</td>
</tr>
<tr>
<td>IAA</td>
<td>integrated agriculture-aquaculture</td>
</tr>
<tr>
<td>IAM</td>
<td>integrated assessment model</td>
</tr>
<tr>
<td>IBI</td>
<td>Index of Biotic Integrity</td>
</tr>
<tr>
<td>ICBG</td>
<td>International Cooperative Biodiversity Groups</td>
</tr>
<tr>
<td>ICDP</td>
<td>integrated conservation and development project</td>
</tr>
<tr>
<td>ICJ</td>
<td>International Court of Justice</td>
</tr>
<tr>
<td>ICRAF</td>
<td>International Center for Research in Agroforestry</td>
</tr>
<tr>
<td>ICRW</td>
<td>International Convention for the Regulation of Whaling</td>
</tr>
<tr>
<td>ICSU</td>
<td>International Council for Science</td>
</tr>
<tr>
<td>ICZM</td>
<td>integrated coastal zone management</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre (Canada)</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IEG</td>
<td>international environmental governance</td>
</tr>
<tr>
<td>IEK</td>
<td>indigenous ecological knowledge</td>
</tr>
<tr>
<td>IFPRI</td>
<td>International Food Policy Research Institute</td>
</tr>
<tr>
<td>IGBP</td>
<td>International Geosphere-Biosphere Program</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>IK</td>
<td>indigenous knowledge</td>
</tr>
<tr>
<td>ILO</td>
<td>International Labour Organization</td>
</tr>
<tr>
<td>IMF</td>
<td>International Monetary Fund</td>
</tr>
<tr>
<td>IMPACT</td>
<td>International Model for Policy Analysis of Agricultural Commodities and Trade</td>
</tr>
<tr>
<td>IMR</td>
<td>infant mortality rate</td>
</tr>
<tr>
<td>INESI</td>
<td>International Network of Sustainability Initiatives (hypothetical, in Scenarios)</td>
</tr>
<tr>
<td>INTA</td>
<td>Instituto Nacional de Tecnología Agropecuaria (Argentina)</td>
</tr>
<tr>
<td>IPAT</td>
<td>impact of population, affluence, technology</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPM</td>
<td>integrated pest management</td>
</tr>
<tr>
<td>IPR</td>
<td>intellectual property rights</td>
</tr>
<tr>
<td>IRBM</td>
<td>integrated river basin management</td>
</tr>
<tr>
<td>ISEH</td>
<td>International Society for Ecosystem Health</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITTPGR</td>
<td>International Treaty on Plant Genetic Resources for Food and Agriculture</td>
</tr>
<tr>
<td>ITQs</td>
<td>individual transferable quotas</td>
</tr>
<tr>
<td>ITTO</td>
<td>International Tropical Timber Organization</td>
</tr>
<tr>
<td>IUCN</td>
<td>World Conservation Union</td>
</tr>
<tr>
<td>IUU</td>
<td>illegal, unregulated, and unreported (fishing)</td>
</tr>
<tr>
<td>IVM</td>
<td>integrated vector management</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>IWMI</td>
<td>International Water Management Institute</td>
</tr>
<tr>
<td>IWRM</td>
<td>integrated water resources management</td>
</tr>
<tr>
<td>JDSD</td>
<td>Johannesburg Declaration on Sustainable Development</td>
</tr>
<tr>
<td>JI</td>
<td>joint implementation</td>
</tr>
<tr>
<td>JMP</td>
<td>Joint Monitoring Program</td>
</tr>
<tr>
<td>LAC</td>
<td>Latin America and the Caribbean</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>LARD</td>
<td>livelihood approaches to rural development</td>
</tr>
<tr>
<td>LDC</td>
<td>least developed country</td>
</tr>
<tr>
<td>LEK</td>
<td>local ecological knowledge</td>
</tr>
<tr>
<td>LME</td>
<td>large marine ecosystems</td>
</tr>
<tr>
<td>LPI</td>
<td>Living Planet Index</td>
</tr>
<tr>
<td>LSMS</td>
<td>Living Standards Measurement Study</td>
</tr>
<tr>
<td>LULUCF</td>
<td>land use, land use change, and forestry</td>
</tr>
<tr>
<td>MA</td>
<td>Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>MAI</td>
<td>mean annual increments</td>
</tr>
<tr>
<td>MBI</td>
<td>market-based instruments</td>
</tr>
<tr>
<td>MCA</td>
<td>multicriteria analysis</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goal</td>
</tr>
<tr>
<td>MEA</td>
<td>multilateral environmental agreement</td>
</tr>
<tr>
<td>MENA</td>
<td>Middle East and North Africa</td>
</tr>
<tr>
<td>MER</td>
<td>market exchange rate</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MICS</td>
<td>multiple indicator cluster surveys</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MPA</td>
<td>marine protected area</td>
</tr>
<tr>
<td>MSVPA</td>
<td>multispecies virtual population analysis</td>
</tr>
<tr>
<td>NAP</td>
<td>National Action Program (of desertification convention)</td>
</tr>
<tr>
<td>NBP</td>
<td>net biome productivity</td>
</tr>
<tr>
<td>NCD</td>
<td>noncommunicable disease</td>
</tr>
<tr>
<td>NCS</td>
<td>National Conservation Strategy</td>
</tr>
<tr>
<td>NCSD</td>
<td>national council for sustainable development</td>
</tr>
<tr>
<td>NDVI</td>
<td>normalized difference vegetation index</td>
</tr>
<tr>
<td>NE</td>
<td>effective size of a population</td>
</tr>
<tr>
<td>NEAP</td>
<td>national environmental action plan</td>
</tr>
<tr>
<td>NEP</td>
<td>new ecological paradigm; also net ecosystem productivity</td>
</tr>
<tr>
<td>NEPAD</td>
<td>New Partnership for Africa’s Development</td>
</tr>
<tr>
<td>NFAP</td>
<td>National Forestry Action Plan</td>
</tr>
<tr>
<td>NFP</td>
<td>national forest programs</td>
</tr>
<tr>
<td>NGO</td>
<td>nongovernmental organization</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health (United States)</td>
</tr>
<tr>
<td>NMHC</td>
<td>non-methane hydrocarbons</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanographic and Atmospheric Administration (United States)</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary productivity</td>
</tr>
<tr>
<td>NSSD</td>
<td>national strategies for sustainable development</td>
</tr>
<tr>
<td>NUE</td>
<td>nitrogen use efficiency</td>
</tr>
<tr>
<td>NWFP</td>
<td>non-wood forest product</td>
</tr>
<tr>
<td>ODA</td>
<td>official development assistance</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OSB</td>
<td>oriented strand board</td>
</tr>
<tr>
<td>OWL</td>
<td>other wooded land</td>
</tr>
<tr>
<td>PA</td>
<td>protected area</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PCBs</td>
<td>polychlorinated biphenyls</td>
</tr>
<tr>
<td>PEM</td>
<td>protein energy malnutrition</td>
</tr>
<tr>
<td>PES</td>
<td>payment for environmental (or ecosystem) services</td>
</tr>
<tr>
<td>PFT</td>
<td>plant functional type</td>
</tr>
<tr>
<td>PNG</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>POPs</td>
<td>persistent organic pollutants</td>
</tr>
<tr>
<td>PPA</td>
<td>participatory poverty assessment</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PPI</td>
<td>potential Pareto improvement</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ppmv</td>
<td>parts per million by volume</td>
</tr>
<tr>
<td>PPP</td>
<td>purchasing power parity; also public-private partnership</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>PQLI</td>
<td>Physical Quality of Life Index</td>
</tr>
<tr>
<td>PRA</td>
<td>participatory rural appraisal</td>
</tr>
<tr>
<td>PRSP</td>
<td>Poverty Reduction Strategy Paper</td>
</tr>
<tr>
<td>PSE</td>
<td>producer support estimate</td>
</tr>
<tr>
<td>PVA</td>
<td>population viability analysis</td>
</tr>
<tr>
<td>RANWA</td>
<td>Research and Action in Natural Wealth Administration</td>
</tr>
<tr>
<td>RBO</td>
<td>river basin organization</td>
</tr>
<tr>
<td>RIDES</td>
<td>Recursos e Investigación para el Desarrollo Sustentable (Chile)</td>
</tr>
<tr>
<td>RIL</td>
<td>reduced impact logging</td>
</tr>
<tr>
<td>RLI</td>
<td>Red List Index</td>
</tr>
<tr>
<td>RO</td>
<td>reverse osmosis</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>RRA</td>
<td>rapid rural appraisal</td>
</tr>
<tr>
<td>RUE</td>
<td>rain use efficiency</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SADCC</td>
<td>Southern African Development Coordination Conference</td>
</tr>
<tr>
<td>SaMA</td>
<td>Southern African Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>SAP</td>
<td>structural adjustment program</td>
</tr>
<tr>
<td>SAR</td>
<td>species-area relationship</td>
</tr>
<tr>
<td>SARS</td>
<td>severe acute respiratory syndrome</td>
</tr>
<tr>
<td>SBSTTA</td>
<td>Subsidiary Body on Scientific, Technical and Technological Advice (of CBD)</td>
</tr>
<tr>
<td>SEA</td>
<td>strategic environmental assessment</td>
</tr>
<tr>
<td>SEME</td>
<td>simple empirical models for eutrophication</td>
</tr>
<tr>
<td>SES</td>
<td>social-ecological system</td>
</tr>
<tr>
<td>SFM</td>
<td>sustainable forest management</td>
</tr>
<tr>
<td>SIDS</td>
<td>small island developing states</td>
</tr>
<tr>
<td>SMS</td>
<td>safe minimum standard</td>
</tr>
<tr>
<td>SOM</td>
<td>soil organic matter</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emissions Scenarios (of the IPCC)</td>
</tr>
<tr>
<td>SSC</td>
<td>Species Survival Commission (of IUCN)</td>
</tr>
<tr>
<td>SWAP</td>
<td>sector-wide approach</td>
</tr>
<tr>
<td>TAC</td>
<td>total allowable catch</td>
</tr>
<tr>
<td>TBT</td>
<td>tributyltin</td>
</tr>
<tr>
<td>TC</td>
<td>travel cost</td>
</tr>
<tr>
<td>TCM</td>
<td>travel cost method</td>
</tr>
<tr>
<td>TDR</td>
<td>tradable development rights</td>
</tr>
<tr>
<td>TDS</td>
<td>total dissolved solids</td>
</tr>
<tr>
<td>TEIA</td>
<td>transboundary environmental impact assessment</td>
</tr>
<tr>
<td>TEK</td>
<td>traditional ecological knowledge</td>
</tr>
<tr>
<td>TEM</td>
<td>terrestrial ecosystem model</td>
</tr>
<tr>
<td>TESEO</td>
<td>Treaty Enforcement Services Using Earth Observation</td>
</tr>
<tr>
<td>TEV</td>
<td>total economic value</td>
</tr>
<tr>
<td>TFAP</td>
<td>Tropical Forests Action Plan</td>
</tr>
<tr>
<td>TFP</td>
<td>total factor productivity</td>
</tr>
<tr>
<td>TFR</td>
<td>total fertility rate</td>
</tr>
<tr>
<td>Tg</td>
<td>teragram (10^{12} grams)</td>
</tr>
<tr>
<td>TK</td>
<td>traditional knowledge</td>
</tr>
<tr>
<td>TMDL</td>
<td>total maximum daily load</td>
</tr>
<tr>
<td>TOF</td>
<td>trees outside of forests</td>
</tr>
<tr>
<td>TRIPS</td>
<td>Trade-Related Aspects of Intellectual Property Rights</td>
</tr>
<tr>
<td>TSU</td>
<td>Technical Support Unit</td>
</tr>
<tr>
<td>TW</td>
<td>terawatt</td>
</tr>
<tr>
<td>UMD</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>UNCCD</td>
<td>United Nations Convention to Combat Desertification</td>
</tr>
<tr>
<td>UNCED</td>
<td>United Nations Conference on Environment and Development</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UNIDO</td>
<td>United Nations Industrial Development Organization</td>
</tr>
<tr>
<td>UNRO</td>
<td>United Nations Regional Organization (hypothetical body, in Scenarios)</td>
</tr>
<tr>
<td>UNSO</td>
<td>UNDP’s Office to Combat Desertification and Drought</td>
</tr>
<tr>
<td>USAID</td>
<td>U.S. Agency for International Development</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>VW</td>
<td>virtual water</td>
</tr>
<tr>
<td>WBCSD</td>
<td>World Business Council for Sustainable Development</td>
</tr>
<tr>
<td>WCD</td>
<td>World Commission on Dams</td>
</tr>
<tr>
<td>WCED</td>
<td>World Commission on Environment and Development</td>
</tr>
<tr>
<td>WCMC</td>
<td>World Conservation Monitoring Centre (of UNEP)</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WIPO</td>
<td>World Intellectual Property Organization</td>
</tr>
<tr>
<td>WISP</td>
<td>weighted index of social progress</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WPI</td>
<td>Water Poverty Index</td>
</tr>
<tr>
<td>WRF</td>
<td>white rot fungi</td>
</tr>
<tr>
<td>WSSD</td>
<td>World Summit on Sustainable Development</td>
</tr>
<tr>
<td>wta</td>
<td>withdrawals-to-availability ratio (of water)</td>
</tr>
<tr>
<td>WTA</td>
<td>willingness to accept compensation</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
<tr>
<td>WTP</td>
<td>willingness to pay</td>
</tr>
<tr>
<td>WWAP</td>
<td>World Water Assessment Programme</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wide Fund for Nature</td>
</tr>
<tr>
<td>WWV</td>
<td>World Water Vision</td>
</tr>
</tbody>
</table>
Appendix D

Glossary

Abatement cost: See Marginal abatement cost.

Abundance: The total number of individuals of a taxon or taxa in an area, population, or community. Relative abundance refers to the total number of individuals of one taxon compared with the total number of individuals of all other taxa in an area, volume, or community.

Active adaptive management: See Adaptive management.

Adaptation: Adjustment in natural or human systems to a new or changing environment. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation.

Adaptive capacity: The general ability of institutions, systems, and individuals to adjust to potential damage, to take advantage of opportunities, or to cope with the consequences.

Adaptive management: A systematic process for continually improving management policies and practices by learning from the outcomes of previously employed policies and practices. In active adaptive management, management is treated as a deliberate experiment for purposes of learning.

Afforestation: Planting of forests on land that has historically not contained forests. (Compare Reafforestation.)

Agrobiodiversity: The diversity of plants, insects, and soil biota found in cultivated systems.

Agroforestry systems: Mixed systems of crops and trees providing wood, non-wood forest products, food, fuel, fodder, and shelter.

Albedo: A measure of the degree to which a surface or object reflects solar radiation.

Alien species: Species introduced outside its normal distribution.

Alien invasive species: See Invasive alien species.

Aquaculture: Breeding and rearing of fish, shellfish, or plants in ponds, enclosures, or other forms of confinement in fresh or marine waters for the direct harvest of the product.

Benefits transfer approach: Economic valuation approach in which estimates obtained (by whatever method) in one context are used to estimate values in a different context.

Binding constraints: Political, social, economic, institutional, or ecological factors that rule out a particular response.

Biodiversity (a contraction of biological diversity): The variability among living organisms from all sources, including terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part. Biodiversity includes diversity within species, between species, and between ecosystems.

Biodiversity regulation: The regulation of ecosystem processes and services by the different components of biodiversity.

Biogeographic realm: A large spatial region, within which ecosystems share a broadly similar biota. Eight terrestrial biogeographic realms are typically recognized, corresponding roughly to continents (e.g., Afrotropical realm).

Biological diversity: See Biodiversity.

Biomass: The mass of tissues in living organisms in a population, ecosystem, or spatial unit.

Biome: The largest unit of ecological classification that is convenient to recognize below the entire globe. Terrestrial biomes are typically based on dominant vegetation structure (e.g., forest, grassland). Ecosystems within a biome function in a broadly similar way, although they may have very different species composition. For example, all forests share certain properties regarding nutrient cycling, disturbance, and biomass that are different from the properties of grasslands. Marine biomes are typically based on biogeochemical properties. The WFP biome classification is used in the MA.

Biopropecting: The exploration of biodiversity for genetic and biogeochemical resources of social or commercial value.

Biotechnology: Any technological application that uses biological systems, living organisms, or derivatives thereof to make or modify products or processes for specific use.

Biotic homogenization: Process by which the differences between biotic communities in different areas are on average reduced.

Blueprint approaches: Approaches that are designed to be applicable in a wider set of circumstances and that are not context-specific or sensitive to local conditions.

Boundary organizations: Public or private organizations that synthesize and translate scientific research and explore its policy implications to help bridge the gap between science and decision-making.

Bridging organizations: Organizations that facilitate, and offer an arena for, stakeholder collaboration, trust-building, and conflict resolution.

Capability: The combinations of doings and beings from which people can choose to lead the kind of life they value. Basic capability is the capability to meet a basic need.

Capacity building: A process of strengthening or developing human resources, institutions, organizations, or networks. Also referred to as capacity development or capacity enhancement.

Capital value (of an ecosystem): The present value of the stream of ecosystem services that an ecosystem will generate under a particular management or institutional regime.

Capture fisheries: See Fishery.

Carbon sequestration: The process of increasing the carbon content of a reservoir other than the atmosphere.

Cascading interaction: See Trophic cascade.

Catch: The number or weight of all fish caught by fishing operations, whether the fish are landed or not.

Coastal system: Systems containing terrestrial areas dominated by ocean influences of tides and marine aerosols, plus nearshore marine areas. The inland extent of coastal ecosystems is the line where land-based influences dominate, up to a maximum of 100 kilometers from the coastline or 100-meter elevation (whichever is closer to the sea), and the outward extent is the 50-meter-dePTH contour. See also System.

Collaborative (or joint) forest management: Community-based management of forests, where resource tenure by local communities is secured.

Common pool resource: A valued natural or human-made resource or facility in which one person’s use subtracts from another’s use and where it is often necessary but difficult to exclude potential users from the resource. (Compare Common property resource.)

Common property management system: The institutions (i.e., sets of rules) that define and regulate the use rights for common pool resources. Not the same as an open access system.

Common property resource: A good or service shared by a well-defined community. (Compare Common pool resource.)
Community (ecological): An assemblage of species occurring in the same space or time, often linked by biotic interactions such as competition or predation.

Community (human, local): A collection of human beings who have something in common. A local community is a fairly small group of people who share a common place of residence and a set of institutions based on this fact, but the word ‘community’ is also used to refer to larger collections of people who have something else in common (e.g., national community, donor community).

Condition of an ecosystem: The capacity of an ecosystem to yield services, relative to its potential capacity.

Condition of an ecosystem service: The capacity of an ecosystem service to yield benefits to people, relative to its potential capacity.

Constituents of well-being: The experiential aspects of well-being, such as health, happiness, and freedom to be and do, and, more broadly, basic liberties.

Consumptive use: The reduction in the quantity or quality of a good available for other users due to consumption.

Contingent valuation: Economic valuation technique based on a survey of how much respondents would be willing to pay for specified benefits.

Core dataset: Data sets designated to have wide potential application throughout the Millennium Ecosystem Assessment process. They include land use, land cover, climate, and population data sets.

Cost-benefit analysis: A technique designed to determine the feasibility of a project or plan by quantifying its costs and benefits.

Cost-effectiveness analysis: Analysis to identify the least cost option that meets a particular goal.

Critically endangered species: Species that face an extremely high risk of extinction in the wild. See also Threatened species.

Cross-scale feedback: A process in which effects of some action are transmitted from a smaller spatial extent to a larger one, or vice versa. For example, a global policy may constrain the flexibility of a local region to use certain response options to environmental change, or a local agricultural pest outbreak may affect regional food supply.

Cultivar (a contraction of cultivated variety): A variety of a plant developed from a natural species and maintained under cultivation.

Cultivated system: Areas of landscape or seascapes actively managed for the production of food, feed, fiber, or biofuels.

Cultural landscape: See Landscape.

Cultural services: The nonmaterial benefits people obtain from ecosystems through spiritual enrichment, cognitive development, reflection, recreation, and aesthetic experience, including, e.g., knowledge systems, social relations, and aesthetic values.

Decision analytical framework: A coherent set of concepts and procedures aimed at synthesizing available information to help policymakers assess consequences of various decision options. DAFs organize the relevant information in a suitable framework, apply decision criteria (both based on some paradigms or theories), and thus identify options that are better than others under the assumptions characterizing the analytical framework and the application at hand.

Decision-maker: A person whose decisions, and the actions that follow from them, can influence a condition, process, or issue under consideration.

Decomposition: The ecological process carried out primarily by microbes that leads to a transformation of dead organic matter into inorganic matter.

Deforestation: Conversion of forest to non-forest.

Degradation of an ecosystem service: For provisioning services, decreased production of the service through changes in area over which the service is provided, or decreased production per unit area. For regulating and supporting services, a reduction in the benefits obtained from the service, either through a change in the service or through human pressures on the service exceeding its limits. For cultural services, a change in the ecosystem features that decreases the cultural benefits provided by the ecosystem.

Degradation of ecosystems: A persistent reduction in the capacity to provide ecosystem services.

Desertification: Land degradation in drylands resulting from various factors, including climatic variations and human activities.

Determinants of well-being: Inputs into the production of well-being, such as food, clothing, potable water, and access to knowledge and information.

Direct use value (of ecosystems): The benefits derived from the services provided by an ecosystem that are used directly by an economic agent. These include consumptive uses (e.g., harvesting goods) and nonconsumptive uses (e.g., enjoyment of scenic beauty). Agents are often physically present in an ecosystem to receive direct use value. (Compare Indirect use value.)

Disability-adjusted life years: The sum of years of life lost due to premature death and illness, taking into account the age of death compared with natural life expectancy and the number of years of life lived with a disability. The measure of number of years lived with the disability considers the duration of the disease, weighted by a measure of the severity of the disease.

Diversity: The variety and relative abundance of different entities in a sample.

Driver: Any natural or human-induced factor that directly or indirectly causes a change in an ecosystem.

Driver, direct: A driver that unequivocally influences ecosystem processes and can therefore be identified and measured to differing degrees of accuracy. (Compare Driver, indirect.)

Driver, endogenous: A driver whose magnitude can be influenced by the decision-maker. Whether a driver is exogenous or endogenous depends on the organizational scale. Some drivers (e.g., prices) are exogenous to a decision-maker at one level (a farmer) but endogenous at other levels (the nation-state). (Compare Driver, exogenous.)

Driver, exogenous: A driver that cannot be altered by the decision-maker. (Compare Driver, endogenous.)

Driver, indirect: A driver that operates by altering the level or rate of change of one or more direct drivers. (Compare Driver, direct.)

Drylands: See Dryland system.

Dryland system: Areas characterized by lack of water, which constrains the two major interlinked services of the system: primary production and nutrient cycling. Four dryland subtypes are widely recognized: dry sub-humid, semiarid, arid, and hyperarid, showing an increasing level of aridity or moisture deficit. See also System.

Ecological character: See Ecosystem properties.

Ecological degradation: See Degradation of ecosystems.

Ecological footprint: An estimate of the area of productive land and aquatic ecosystems required to produce the resources used and to assimilate the wastes produced by a defined population at a specified material standard of living, wherever on Earth that land may be located.

Ecological security: A condition of ecological safety that ensures access to a sustainable flow of provisioning, regulating, and cultural services needed by local communities to meet their basic capabilities.

Ecological surprises: Unexpected—and often disproportionately large—consequence of changes in the abiotic (e.g., climate, disturbance) or biotic (e.g., invasions, pathogens) environment.

Ecosystem: A dynamic complex of plant, animal, and microorganism communities and their non-living environment interacting as a functional unit.

Ecosystem approach: A strategy for the integrated management of land, water, and living resources that promotes conservation and sustainable use. An ecosystem approach is based on the application of appropriate scientific methods focused on levels of biological organization, which encompasses the essential structure, processes, functions, and interactions among organisms and their environment. It recognizes that humans, with their cultural diversity, are an integral component of many ecosystems.

Ecosystem assessment: A social process through which the findings of science concerning the causes of ecosystem change, their consequences for human well-being, and management and policy options are brought to bear on the needs of decision-makers.

Ecosystem boundary: The spatial delimitation of an ecosystem, typically based on discontinuities in the distribution of organisms, the biophysical environment (soil types, drainage basins, depth in a
water body), and spatial interactions (home ranges, migration patterns, fluxes of matter).

Ecosystem resilience: Any variation in the state, outputs, or structure of an ecosystem.

Ecosystem function: See Ecosystem process.

Ecosystem interactions: Exchanges of materials, energy, and information within and among ecosystems.

Ecosystem management: An approach to maintaining or restoring the composition, structure, function, and delivery of services of natural and modified ecosystems for the goal of achieving sustainability. It is based on an adaptive, collaboratively developed vision of desired future conditions that integrates ecological, socioeconomic, and institutional perspectives, applied within a geographic framework, and defined primarily by natural ecological boundaries.

Ecosystem process: An intrinsic ecosystem characteristic whereby an ecosystem maintains its integrity. Ecosystem processes include decomposition, production, nutrient cycling, and fluxes of nutrients and energy.

Ecosystem properties: The size, biodiversity, stability, degree of organization, internal exchanges of materials, energy, and information among different pools, and other properties that characterize an ecosystem. Includes ecosystem functions and processes.

Ecosystem resilience: See Resilience.

Ecosystem resistance: See Resistance.

Ecosystem robustness: See Ecosystem stability.

Ecosystem services: The benefits people obtain from ecosystems. These include provisioning services such as food and water; regulating services such as flood and disease control; cultural services such as spiritual, recreational, and cultural benefits; and supporting services such as nutrient cycling that maintain the conditions for life on Earth. The concept “ecosystem goods and services” is synonymous with ecosystem services.

Ecosystem stability (or ecosystem robustness): A description of the dynamic properties of an ecosystem. An ecosystem is considered stable or robust if it returns to its original state after a perturbation, exhibits low temporal variability, or does not change dramatically in the face of a perturbation.

Elasticity: A measure of responsiveness of one variable to a change in another, usually defined in terms of percentage change. For example, own-price elasticity of demand is the percentage change in the quantity demanded of a good for a 1% change in the price of that good. Other common elasticity measures include supply and income elasticity.

Emergent disease: Diseases that have recently increased in incidence, impact, or geographic range; that are caused by pathogens that have recently evolved; that are newly discovered; or that have recently changed their clinical presentation.

Emergent property: A phenomenon that is not evident in the constituent parts of a system but that appears when they interact in the system as a whole.

Enabling conditions: Critical preconditions for success of responses, including political, institutional, social, economic, and ecological factors.

Endangered species: Species that face a very high risk of extinction in the wild. See also Threatened species.

Endemic (in ecology): A species or higher taxonomic unit found only within a specific area.

Endemic (in health): The constant presence of a disease or infectious agent within a given geographic area or population group; may also refer to the usual prevalence of a given disease within such area or group.

Endemism: The fraction of species that is endemic relative to the total number of species found in a specific area.

Epistemology: The theory of knowledge, or a “way of knowing.”

Equity: Fairness of rights, distribution, and access. Depending on context, this can refer to resources, services, or power.

Eutrophication: The increase in additions of nutrients to freshwater or marine systems, which leads to increases in plant growth and often to undesirable changes in ecosystem structure and function.

Evapotranspiration: See Transpiration.

Existence value: The value that individuals place on knowing that a resource exists, even if they never use that resource (also sometimes known as conservation value or passive use value).

Exotic species: See Alien species.

Externality: A consequence of an action that affects someone other than the agent undertaking that action and for which the agent is neither compensated nor penalized through the markets. Externali-
ties can be positive or negative.

Feedback: See Negative feedback, Positive feedback, and Cross-scale feedback.

Fishery: A particular kind of fishing activity, e.g., a trawl fishery, or a particular species targeted, e.g., a cod fishery or salmon fishery.

Fish stock: See Stock.

Fixed nitrogen: See Reactive nitrogen.

Flyway: Areas of the world used by migratory birds in moving between breeding and wintering grounds.

Forest systems: Systems in which trees are the predominant life forms. Statistics reported in this assessment are based on areas that are dominated by trees (perennial woody plants taller than five meters at maturity), where the tree crown cover exceeds 10%, and where the area is more than 0.5 hectares. “Open forests” have a canopy cover between 10% and 40%, and “closed forests” a canopy cover of more than 40%. “Fragmented forests” refer to mosaics of forest patches and non-forest land. See also System.

Freedom: The range of options a person has in deciding the kind of life to lead.

Functional diversity: The value, range, and relative abundance of traits present in the organisms in an ecological community.

Functional redundancy (= functional compensation): A characteristic of ecosystems in which more than one species in the system can carry out a particular process. Redundancy may be total or partial—that is, a species may not be able to completely replace the other species or it may compensate only some of the processes in which the other species are involved.

Functional types (= functional groups = guilds): Groups of organisms that respond to the environment or affect ecosystem processes in a similar way. Examples of plant functional types include nitrogen-fixers versus non-fixers, stress-tolerant versus ruderal versus competitor, resprouter versus seeder, deciduous versus evergreen. Examples of animal functional types include granivorous versus fleshy-fruit eater, nocturnal versus diurnal predator, browser versus grazer.

Geographic information system: A computerized system organizing data sets through a geographical referencing of all data included in its collections.

Globalization: The increasing integration of economies and societies around the world, particularly through trade and financial flows, and the transfer of culture and technology.

Global scale: The geographical realm encompassing all of Earth.

Governance: The process of regulating human behavior in accordance with shared objectives. The term includes both governmental and nongovernmental mechanisms.

Health, human: A state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity. The health of a whole community or population is reflected in measurements of disease incidence and prevalence, age-specific death rates, and life expectancy.

High seas: The area outside of national jurisdiction, i.e., beyond each nation’s Exclusive Economic Zone or other territorial waters.

Human well-being: See Well-being.

Income poverty: See Poverty.

Indicator: Information based on measured data used to represent a particular attribute, characteristic, or property of a system.

Indigenous knowledge (or local knowledge): The knowledge that is unique to a given culture or society.

Indirect interaction: Those interactions among species in which a species, through direct interaction with another species or modification of resources, alters the abundance of a third species with which it is not directly interacting. Indirect interactions can be trophic or non-trophic in nature.
Indirect use value: The benefits derived from the goods and services provided by an ecosystem that are used indirectly by an economic agent. For example, an agent at some distance from an ecosystem may derive benefits from drinking water that has been purified as it passed through the ecosystem. (Compare Direct use value.)

Infant mortality rate: Number of deaths of infants aged 0–12 months divided by the number of live births.

Inland water systems: Permanent water bodies other than salt-water systems on the coast, seas, and oceans. Includes rivers, lakes, reservoirs, wetlands and inland saline lakes and marshes. See also System.

Institutions: The rules that guide how people within societies live, work, and interact with each other. Formal institutions are written or codified rules. Examples of formal institutions would be the constitution, the judiciary laws, the organized market, and property rights. Informal institutions are rules governed by social and behavioral norms of the society, family, or community. Also referred to as organizations.

Integrated coastal zone management: Approaches that integrate economic, social, and ecological perspectives for the management of coastal resources and areas.

Integrated conservation and development projects: Initiatives that aim to link biodiversity conservation and development.

Integrated pest management: Any practices that attempt to capitalize on natural processes that reduce pest abundance. Sometimes used to refer to monitoring programs where farmers apply pesticides to improve economic efficiency (reducing application rates and improving profitability).

Integrated responses: Responses that address degradation of ecosystem services across a number of systems simultaneously or that also explicitly include objectives to enhance human well-being.

Integrated river basin management: Integration of water planning and management with environmental, social, and economic development concerns, with an explicit objective of improving human welfare.

Interventions: See Responses.

Intrinsic value: The value of someone or something in and for itself, irrespective of its utility for people.

Invasibility: Intrinsic susceptibility of an ecosystem to be invaded by an alien species.

Invasive alien species: An alien species whose establishment and spread modifies ecosystems, habitats, or species.

Irreversibility: The quality of being impossible or difficult to return to, or to restore to, a former condition. See also Option value, Precautionary principle, Resilience, and Threshold.

Island systems: Lands isolated by surrounding water, with a high proportion of coast to hinterland. The degree of isolation from the mainland in both natural and social aspects is accounted by the isola effect. See also System.

Isola effect: Environmental issues that are unique to island systems. This uniqueness takes into account the physical seclusion of islands as isolated pieces of land exposed to marine or climatic disturbances with a more limited access to space, products, and services when compared with most continental areas, but also includes subjective issues such as the perceptions and attitudes of islanders themselves.

Keystone species: A species whose impact on the community is disproportionately large relative to its abundance. Effects can be produced by consumption (trophic interactions), competition, mutualism, dispersal, pollination, disease, or habitat modification (nontrophic interactions).

Land cover: The physical coverage of land, usually expressed in terms of vegetation cover or lack of it. Related to, but not synonymous with, land use.

Landscape: An area of land that contains a mosaic of ecosystems, including human-dominated ecosystems. The term cultural landscape is often used when referring to landscapes containing significant human populations or in which there has been significant human influence on the land.

Landscape unit: A portion of relatively homogenous land cover within the local-to-regional landscape.

Land use: The human use of a piece of land for a certain purpose (such as irrigated agriculture or recreation). Influenced by, but not synonymous with, land cover.

Length of growing period: The total number of days in a year during which rainfall exceeds one half of potential evapotranspiration. For boreal and temperate zone, growing season is usually defined as a number of days with the average daily temperature that exceeds a definite threshold, such as 10°C.

Local knowledge: See Indigenous knowledge.

Mainstreaming: Incorporating a specific concern, e.g., sustainable use of ecosystems, into policies and actions.

Malnutrition: A state of bad nourishment. Malnutrition refers both to undernutrition and overnutrition, as well as to conditions arising from dietary imbalances leading to diet-related noncommunicable diseases.

Marginal abatement cost: The cost of abating an incremental unit of, for instance, a pollutant.

Marine system: Marine waters from the low-water mark to the high seas that support marine capture fisheries, as well as deepwater (>50 meters) habitats. Four sub-divisions (marine biomes) are recognized: the coastal boundary zone; trade-winds; westerlies; and polar.

Market-based instruments: Mechanisms that create a market for ecosystem services in order to improving the efficiency in the way the service is used. The term is used for mechanisms that create new markets, but also for responses such as taxes, subsidies, or regulations that affect existing markets.

Market failure: The inability of a market to capture the correct values of ecosystem services.

Mitigation: An anthropogenic intervention to reduce negative or unsustainable uses of ecosystems or to enhance sustainable practices.

Mountain system: High-altitude (greater than 2,500 meters) areas and steep mid-altitude (1,000 meters at the equator, decreasing to sea level where alpine life zones meet polar life zones at high latitudes) areas, excluding large plateaus.

Negative feedback: Feedback that has a net effect of dampening perturbation.

Net primary productivity: See Production, biological.

Non-linearity: A relationship or process in which a small change in the value of a driver (i.e., an independent variable) produces an disproportionate change in the outcome (i.e., the dependent variable). Relationships where there is a sudden discontinuity or change in rate are sometimes referred to as abrupt and often form the basin of thresholds. In loose terms, they may lead to unexpected outcomes or “surprises.”

Nutrient cycling: The processes by which elements are extracted from their mineral, aquatic, or atmospheric sources or recycled from their organic forms, converting them to the form in which their uptake occurs and ultimately returning them to the atmosphere, water, or soil.

Nutrients: The approximately 20 chemical elements known to be essential for the growth of living organisms, including nitrogen, sulfur, phosphorus, and carbon.

Open access resource: A good or service over which no property rights are recognized.

Opportunity cost: The benefits forgone by undertaking one activity instead of another.

Option value: The value of preserving the option to use services in the future either by oneself (option value) or by others or heirs (bequest value). Quasi-option value represents the value of avoiding irreversible decisions until new information reveals whether certain ecosystem services have values society is not currently aware of.

Organic farming: Crop and livestock production systems that do not make use of synthetic fertilizers, pesticides, or herbicides. May also include restrictions on the use of transgenic crops (genetically modified organisms).

Pastoralism, pastoral system: The use of domestic animals as a primary means for obtaining resources from habitats.

Perturbation: An imposed movement of a system away from its current state.
Polar system: Treeless lands at high latitudes. Includes Arctic and Antarctic areas, where the polar system merges with the northern boreal forest and the Southern Ocean respectively. See also System.

Policy failure: A situation in which government policies create inefficiencies in the use of goods and services.

Policy-maker: A person with power to influence or determine policies and practices at an international, national, regional, or local level.

Pollution: A process in the sexual phase of reproduction in some plants caused by the transportation of pollen. In the context of ecosystem services, pollution generally refers to animal-assisted pollination, such as that done by bees, rather than wind pollination.

Population, biological: A group of individuals of the same species, occupying a defined area, and usually isolated to some degree from other similar groups. Populations can be relatively reproductively isolated and adapted to local environments.

Population, human: A collection of living people in a given area. (Compare Community (human, local).)

Positive feedback: Feedback that has a net effect of amplifying perturbation.

Poverty: The pronounced deprivation of well-being. Income poverty refers to a particular formulation expressed solely in terms of per capita or household income.

Precautionary principle: The management concept stating that in cases “where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation,” as defined in the Rio Declaration.

Prediction (or forecast): The result of an attempt to produce a most likely description or estimate of the actual evolution of a variable or system in the future. See also Projection and Scenario.

Primary production: See Production, biological.

Private costs and benefits: Costs and benefits directly felt by individual economic agents or groups as seen from their perspective. (Externalities imposed on others are ignored.) Costs and benefits are valued at the prices actually paid or received by the group, even if these prices are highly distorted. Sometimes termed “financial” costs and benefits. (Compare Social costs and benefits.)

Probability distribution: A distribution that shows all the values that a random variable can take and the likelihood that each will occur.

Production, biological: Rate of biomass produced by an ecosystem, generally expressed as biomass produced per unit of time per unit of surface or volume. Net primary productivity is defined as the energy fixed by plants minus their respiration.

Production, economic: Output of a system.

Productivity, biological: See Production, biological.

Productivity, economic: Capacity of a system to produce high levels of output or responsiveness of the output of a system to inputs.

Projection: A potential future evolution of a quantity or set of quantities, often computed with the aid of a model. Projections are distinguished from “predictions” in order to emphasize that projections involve assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realized; they are therefore subject to substantial uncertainty.

Property rights: The right to specific uses, perhaps including exchange in a market, of ecosystems and their services.

Providing services: The products obtained from ecosystems, including, for example, genetic resources, food and fiber, and fresh water.

Public good: A good or service in which the benefit received by any one party does not diminish the availability of the benefits to others, and where access to the good cannot be restricted.

Reactive nitrogen (or fixed nitrogen): The forms of nitrogen that are generally available to organisms, such as ammonia, nitrate, and organic nitrogen. Nitrogen gas (or dinitrogen), which is the major component of the atmosphere, is inert to most organisms.

Realm: Used to describe the three major types of ecosystems on earth: terrestrial, freshwater, and marine. Diffs fundamentally from biogeographic realm.

Reforestation: Planting of forests on lands that have previously contained forest but have since been converted to some other use. (Compare Afforestation.)

Regime shift: A rapid reorganization of an ecosystem from one relatively stable state to another.

Regulating services: The benefits obtained from the regulation of ecosystem processes, including, for example, the regulation of climate, water, and some human diseases.

Relative abundance: See Abundance.

Reporting unit: The spatial or temporal unit at which assessment or analysis findings are reported. In an assessment, these units are chosen to maximize policy relevance or relevance to the public and thus may differ from those upon which the analyses were conducted (e.g., analyses conducted on mapped ecosystems can be reported on administrative units). See also System.

Resilience: The level of disturbance that an ecosystem can undergo without crossing a threshold to a situation with different structure or outputs. Resilience depends on ecological dynamics as well as the organizational and institutional capacity to understand, manage, and respond to these dynamics.

Resistance: The capacity of an ecosystem to withstand the impacts of drivers without displacement from its present state.

Responses: Human actions, including policies, strategies, and interventions, to address specific issues, needs, opportunities, or problems. In the context of ecosystem management, responses may be of legal, technical, institutional, economic, and behavioral nature and may operate at various spatial and time scales.

Riparian: Something related to, living on, or located at the banks of a watercourse, usually a river or stream.

Safe minimum standard: A decision analytical framework in which the benefits of ecosystem services are assumed to be incalculable and should be preserved unless the costs of doing so rise to an intolerable level, thus shifting the burden of proof to those who would convert them.

Salinization: The buildup of salts in soils.

Scale: The measurable dimensions of phenomena or observations. Expressed in physical units, such as meters, years, population size, or quantities moved or exchanged. In observation, scale determines the relative fineness and coarseness of different detail and the selectivity among patterns these data may form.

Scenario: A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about key driving forces (e.g., rate of technology change, prices) and relationships. Scenarios are neither predictions nor projections and sometimes may be based on a “narrative storyline.” Scenarios may include projections but are often based on additional information from other sources.

Security: Access to resources, safety, and the ability to live in a predictable and controllable environment.

Service: See Ecosystem services.

Social costs and benefits: Costs and benefits as seen from the perspective of society as a whole. These differ from private costs and benefits in being more inclusive (all costs and benefits borne by some member of society are taken into account) and in being valued at social opportunity cost rather than market prices, where these differ. Sometimes termed “economic” costs and benefits. (Compare Private costs and benefits.)

Social incentives: Measures that lower transaction costs by facilitating trust-building and learning as well as rewarding collaboration and conflict resolution. Social incentives are often provided by bridging organizations.

Socioecological system: An ecosystem, the management of this ecosystem by actors and organizations, and the rules, social norms, and conventions underlyng this management. (Compare System.)

Soft law: Non-legally binding instruments, such as guidelines, standards, criteria, codes of practice, resolutions, and principles or declarations, that states establish to implement national laws.

Soil fertility: The potential of the soil to supply nutrient elements in the quantity, form, and proportion required to support optimum plant growth. See also Nutrients.
Symbiosis: The formation of new species.
Species: An interbreeding group of organisms that is reproductively isolated from all other organisms, although there are many partial exceptions to this rule in particular taxa. Operationally, the term species is a generally agreed fundamental taxonomic unit, based on morphological or genetic similarity, that once described and accepted is associated with a unique scientific name.
Species diversity: Biodiversity at the species level, often combining aspects of species richness, their relative abundance, and their dissimilarity.
Species richness: The number of species within a given sample, community, or area.
Statistical variation: Variability in data due to error in measurement, error in sampling, or variation in the measured quantity itself.
Stock (in fisheries): The population or biomass of a fishery resource. Such stocks are usually identified by their location. They can be, but are not always, genetically discrete from other stocks.
Stoichiometry, ecological: The relatively constant proportions of the different nutrients in plant or animal biomass that set constraints on production. Nutrients only available in lower proportions are likely to limit growth.
Storyline: A narrative description of a scenario, which highlights its main features and the relationships between the scenario’s driving forces and its main features.
Strategies: See Responses.
Streamflow: The quantity of water flowing in a watercourse.
Subsidiarity, principle of: The notion of devolving decision-making authority to the lowest appropriate level.
Subsidy: Transfer of resources to an entity, which either reduces the operating costs or increases the revenues of such entity for the purpose of achieving some objective.
Subsistence: An activity in which the output is mostly for the use of the individual person doing it, or their family, and which is a significant component of their livelihood.
Subspecies: A population that is distinct from, and partially reproductively isolated from, other populations of a species but that has not yet diverged sufficiently that interbreeding is impossible.
Supporting services: Ecosystem services that are necessary for the production of all other ecosystem services. Some examples include biomass production, production of atmospheric oxygen, soil formation and retention, nutrient cycling, water cycling, and provisioning of habitat.
Sustainability: A characteristic or state whereby the needs of the present and local population can be met without compromising the ability of future generations or populations in other locations to meet their needs.
Sustainable use (of an ecosystem): Human use of an ecosystem so that it may yield a continuous benefit to present generations while maintaining its potential to meet the needs and aspirations of future generations.
Symbiosis: Close and usually obligatory relationship between two organisms of different species, not necessarily to their mutual benefit.
Synergy: When the combined effect of several forces operating is greater than the sum of the separate effects of the forces.
System: In the Millennium Ecosystem Assessment, reporting units that are ecosystem-based but at a level of aggregation far higher than that usually applied to ecosystems. Thus the system includes many component ecosystems, some of which may not strongly interact with each other, that may be spatially separate, or that may be of a different type to the ecosystems that constitute the majority, or matrix, of the system overall. The system includes the social and economic systems that have an impact on and are affected by the ecosystems included within it. For example, the Condition and Trend Working Group refers to “forest systems,” “cultivated systems,” “mountain systems,” and so on. Systems thus defined are not mutually exclusive, and are permitted to overlap spatially or conceptually. For instance, the “cultivated system” may include areas of “dryland system” and vice versa.
Taxon (pl. taxa): The named classification unit to which individuals or sets of species are assigned. Higher taxa are those above the species level. For example, the common mouse, Mus musculus, belongs to the Genus Mus, the Family Muridae, and the Class Mammalia.
Taxonomy: A system of nested categories (taxa) reflecting evolutionary relationships or morphological similarity.
Tenure: See Property rights, although also sometimes used more specifically in reference to the temporal dimensions and security of property rights.
Threatened species: Species that face a high (vulnerable species), very high (endangered species), or extremely high (critically endangered species) risk of extinction in the wild.
Threshold: A point or level at which new properties emerge in an ecological, economic, or other system, invalidating predictions based on mathematical relationships that apply at lower levels. For example, species diversity of a landscape may decline steadily with increasing habitat degradation to a certain point, then fall sharply after a critical threshold of degradation is reached. Human behavior, especially at group levels, sometimes exhibits threshold effects. Thresholds at which irreversible changes occur are especially of concern to decision-makers. (Compare Non-linearity.)
Time series data: A set of data that expresses a particular variable measured over time.
Total economic value framework: A widely used framework to disaggregate the components of utilitarian value, including direct use value, indirect use value, option value, quasi-option value, and existence value.
Total factor productivity: A measure of the aggregate increase in efficiency of use of inputs. TFP is the ratio of the quantity of output divided by an index of the amount of inputs used. A common input index uses as weights the share of the input in the total cost of production.
Total fertility rate: The number of children a woman would give birth to if through her lifetime she experienced the set of age-specific fertility rates currently observed. Since age-specific rates generally change over time, TFR does not in general give the actual number of births a woman alive today can be expected to have. Rather, it is a synthetic index meant to measure age-specific birth rates in a given year.
Trade-off: Management choices that intentionally or otherwise change the type, magnitude, and relative mix of services provided by ecosystems.
Traditional ecological knowledge: Indigenous knowledge. The cumulative body of knowledge, practices, and beliefs evolved by adaptive processes and handed down through generations. TEK may or may not be indigenous or local, but it is distinguished by the way in which it is acquired and used, through the social process of learning and sharing knowledge. (Compare Indigenous knowledge.)
Traditional knowledge: See Traditional ecological knowledge.
Traditional use: Exploitation of natural resources by indigenous users or by nonindigenous residents using traditional methods. Local use refers to exploitation by local residents.
Transpiration: The process by which water is drawn through plants and returned to the air as water vapor. Evapotranspiration is combined loss of water to the atmosphere via the processes of evaporation and transpiration.
Travel cost methods: Economic valuation techniques that use observed costs to travel to a destination to derive demand functions for that destination.
Trend: A pattern of change over time, over and above short-term fluctuations.
Trophic cascade: A chain reaction of top-down interactions across multiple trophic levels. These occur when changes in the presence or absence (or shifts in abundance) of a top predator alter the production at several lower trophic levels. Such positive indirect effects of top predators on lower trophic levels are mediated by the consumption of mid-level consumers (generally herbivores).
Trophic level: The average level of an organism within a food web, with plants having a trophic level of 1, herbivores 2, first-order carnivores 3, and so on.
Umbrella species: Species that have either large habitat needs or other requirements whose conservation results in many other species being conserved at the ecosystem or landscape level.
Uncertainty: An expression of the degree to which a future condition (e.g., of an ecosystem) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined terminology or uncertain projections of human behavior. Uncertainty can therefore be represented by quantitative measures (e.g., a range of values calculated by various models) or by qualitative statements (e.g., reflecting the judgment of a team of experts).

Urbanization: An increase in the proportion of the population living in urban areas.

Urban systems: Built environments with a high human population density. Operationally defined as human settlements with a minimum population density commonly in the range of 400 to 1,000 persons per square kilometer, minimum size of typically between 1,000 and 5,000 people, and maximum agricultural employment usually in the vicinity of 50–75%. See also System.

Utility: In economics, the measure of the degree of satisfaction or happiness of a person.

Valuation: The process of expressing a value for a particular good or service in a certain context (e.g., of decision-making) usually in terms of something that can be counted, often money, but also through methods and measures from other disciplines (sociology, ecology, and so on). See also Value.

Value: The contribution of an action or object to user-specified goals, objectives, or conditions. (Compare Valuation.)

Value systems: Norms and precepts that guide human judgment and action.

Voluntary measures: Measures that are adopted by firms or other actors in the absence of government mandates.

Vulnerability: Exposure to contingencies and stress, and the difficulty in coping with them. Three major dimensions of vulnerability are involved: exposure to stresses, perturbations, and shocks; the sensitivity of people, places, ecosystems, and species to the stress or perturbation, including their capacity to anticipate and cope with the stress; and the resilience of the exposed people, places, ecosystems, and species in terms of their capacity to absorb shocks and perturbations while maintaining function.

Vulnerable species: Species that face a high risk of extinction in the wild. See also Threatened species.

Water scarcity: A water supply that limits food production, human health, and economic development. Severe scarcity is taken to be equivalent to 1,000 cubic meters per year per person or greater than 40% use relative to supply.

Watershed (also catchment basin): The land area that drains into a particular watercourse or body of water. Sometimes used to describe the dividing line of high ground between two catchment basins.

Water stress: See Water scarcity.

Well-being: A context- and situation-dependent state, comprising basic material for a good life, freedom and choice, health and bodily well-being, good social relations, security, peace of mind, and spiritual experience.

Wetlands: Areas of marsh, fen, peatland, or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters. May incorporate riparian and coastal zones adjacent to the wetlands and islands or bodies of marine water deeper than six meters at low tide laying within the wetlands.

Wise use (of an ecosystem): Sustainable utilization for the benefit of humankind in a way compatible with the maintenance of the natural properties of the ecosystem.
Index

Italic page numbers refer to Figures, Tables, and Boxes. Bold page numbers refer to the Summary.

A
Acidification, 318–320, 396, 397, 404, 526
RAIN5 (Regional Acidification Information and Simulation) model, 104, 319
Adapting Mosaic scenario, 244–254
agricultural intensification, 333–335
agricultural uncertainty, 344
air pollution, 316–318, 476–477
benefits and risks of, 138, 118, 245, 286, 457
biochemical discoveries, 354
biodiversity, 11, 265, 377
climatic change, 389–391
combined threats, 477
freshwater biodiversity, 392–398
habitat loss, 381–387, 476, 502
marine biodiversity, 398–401
overexploitation, 476, 502
terrestrial biodiversity, 384–392
biofuels, 344
biological pest and disease control, 360
child malnutrition, 338
climate change, 276, 320–322, 355, 389–391, 499
coastal protection, 359
community response strategies and options, 505, 509
crop area and livestock numbers growth, 365–366
cultural drivers of change, 195
cultural services, 423
diseases, emerging, 270–271
drylands, 267, 487–491
economic development, 308–309
energy use and production, 313
erosion risk, 356–358
eutrophication, 277
extreme events, 140
fertility rates, 305
fertilizer use, 328–330
fish consumption and production, 340–343
fisheries, 274–275
food demand, 333
food production, 332, 501
forest area, future of, 11, 11, 125
freshwater resources, 346–353
geotechnical resources, 353–354
governmental policy, 474
greenhouse gas emissions, 315, 463
Gulf of Mexico hypoxia, 279–283
human well-being, 427, 436, 457, 474
community implications, 503–504
freedom and choice, 269, 422
health, 269, 418
material needs, 267–269, 414–415
social relations and security, 269, 421
invasive species, 278
involuntary parks, creation of, 261
irrigation area growth, 336
irrigation efficiency, 367
land use or land cover change, 323–327
migration rates, 305
mining and fossil fuel extraction, 330
mortality rates, 305
NGOs and, 508, 509
outcomes for ecosystem services and human well-being (2050 compared with 2000), 9
policy-making for, 474
pollination, 359–360
population size, 305–307
private-sector response strategies and options, 513
proactive policies of, 227, 436, 456
provisioning and regulating services, 362–363, 423
purification, 358–359
rain forests, 265, 267, 484–487
years 2000–15, 245–247
years 2015–30, 247–250
trends of country groups, 127
ecosystem services, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
trends of country groups, 127
civil society's growth, 246
cultural services, 127
education, 246–247
managing ecosystems, 247
years 2015–30, 247–250
B
Bamboo production and rats, 56
Bennett's law, 183
“Best case” scenario not offered, 457, 472
Bioaccumulation, 56
Biochemical discoveries, 354
Bioclimatic envelope approach, 85
Biodiversity, future of, 12–13, 13
climate change as cause of loss, 389–391, 391, 393, 462, 477
community implications, 504
comparison across scenarios, 265, 266, 375–408
conversion of land, effect on, 13–14, 458
disturbance and resilience, 127
ecosystem services and, 25, 127, 378, 402–404, 405
eutrophication and. See Eutrophication
forecasting changes in, 84–87
freshwater, 392–398
intervention opportunities, 402
invasive species. See Invasive species
marine, 398–401
Millennium Development Goals and, 438
modeling changes in, 154–155, 454
NGOs and, 506–507
plants. See Terrestrial biodiversity
population viability analyses, 85, 86–87

551
Biodiversity (continued)
private-sector implications, 511
species-area relationship and, 85, 86
substitutions, feasibility of, 28
terrestrial, 380–392
threat analyses approaches, 85, 86, 475–477, 476
tourism’s effect on, 190
trade-off with land use, 435–436
Bioengineering, 458, 464
Biofuels, 344, 345, 423
Biological invasions. See Invasive species
Biological pest and disease control, 360
Biorne 3 model, 84
Bonaire fisheries and tourism, 439–440, 446
Bovine spongiform encephalitis,
Bonaire fisheries and tourism, 439–440
Biological invasions. See Invasive species
Biological pest and disease control, 360
Biorne 3 model, 84
Bonaire fisheries and tourism, 439–440, 446
Bovine spongiform encephalitis, 53

C

 Cairo Program of Action, 178
Carbon dioxide. See Greenhouse gas emissions
Caribbean fisheries and tourism, 439–440
no-take zones, 440–441
Caribbean Sea Sub-global Assessment, 214
Catastrophic change in ecosystems, 426
CBD. See Convention on Biological Diversity
Central Africa as hot spot region, 363
comparison across scenarios, 363
Central Asia and drivers of land use change, 210
Central North Pacific model for marine biodiversity,
399, 400–401
Central Planning Bureau of the Netherlands, 37
Chernobyl, 261
Chesnut trees, 402
Child malnutrition, 10, 10, 338, 339, 368, 423, 499
China economic acceleration in, 308
energy intensity improvement rates of, 187
fertilizer use and trends in, 205
flood control in, 57, 441–442
food consumption trends in, 183
forestry policy of, 51
invasive species from, due to trade, 402
population policy of, 178
Chytrid mycosis, 211
Civil society. See also Community implications
health and, 416
in Adapting Mosaic scenario, 246, 251–252
Climate change, 49, 520
agricultural yields and, 335–337
as driver of change, 175, 199–202, 301
biodiversity loss and, 389–391, 391, 393, 462, 477
comparison across scenarios, 202, 275–276, 276, 320–322, 321, 389–391, 499, 532
deforestation and, 79
ecosystem consequences of, 201–202
existing projections of, 201
greenhouse gases and aerosol precursors, 200–201
integrated assessment models and, 105–106
land cover change and, 77–81
migration and, 181
observed changes in, 199–200
path-dependency and irreversibility based on human activities, 462
regulation across scenarios, 355
soil erosion and, 357
Club of Rome, 103
Coastal ecosystems
comparison across scenarios, 271, 273, 359
decision-support approach, 99–100
forecasting impacts on, 98–101
nowcast/forecast modeling, 99, 100
Cod fishing, 412
Command and control, 59, 60
Commensalism, 209–210
Community implications, 461, 472, 502–506, 503
biodiversity, 502, 504
human health and well-being, 503–505
interactions between communities, NGOs, and other response actors, 509–510
other ecosystem services, 504
priorities for near-term and long-term community responses, 504–505
 provisioning and regulating ecosystem services, 502–503
response strategies and options by scenario, 505–506
Conceptual framework of ecosystem assessment, 22–33, 26
assessment tools, 31–32
cross-scale interactions and, 29–30
drivers of change and, 29
ecosystems and their services, 25–28
human well-being as focus of, 25
poverty and, 28–29
reporting categories used in, 27
statement of problem, 23–25
strategies and interventions, 32–33
values associated with ecosystems, 30–31, 31
Conflict. See War and conflicts, effect of
Consultative Group on International Agricultural Research, 197
Consumption patterns and structural transformation, 183–184, 184
Contraceptive use, 178
Control. See Socioeconomic context of ecology
Convention on Biological Diversity (CBD), 22, 199, 474–481
ecosystem approach endorsed by, 25
prospects for, 377, 471, 477–480
2010 target, 387, 477–478, 479–480
response strategies beyond 2010, 478–480,
481–484
request for information from, xiii
response strategies beyond 2010, 478–480
scenario usefulness to, 460
threats to biodiversity in scenarios, 475–477, 476
climate change, 477
combined threats, 477
Convention Scorecard, 266
habitat transformation, 476
overexploitation, 476
pollution, 476–477
Convention on Migratory Species, xiii, 22
Convention to Combat Desertification, 22, 487–491
changes in dryland areas, 488
Convention Scorecard on threats to biodiversity in scenarios, 266
prospects for, 471, 489–491, 489–491
request for information from, xiii
risk of desertification, 487–489
scenario’s usefulness to, 460
Creutzfeldt-Jakob disease, 53
Crops. See Agriculture
Cross-cutting comparisons among scenarios, 265–283, 456
acidification, 318–320, 526
agriculture
hyoxia in Gulf of Mexico and, 279–283
uncertainty and, 343–344
air pollution emissions, 315–318, 316–318
biochemical discoveries, 354
biodiversity, 265, 266, 375–408
biofuels, 344, 345
biological pest and disease control, 360
child malnutrition, 338, 539
climate change, 275–276, 276, 320–322, 321, 355, 552
coastal protection, 359
Convention Scorecard, 266
crop area and livestock numbers growth, 365–366
cultural services, 360–361, 361
drylands, 267, 487–491
economic development, 308–309, 309
drying processes, 269–271
energy use and production, 312–313, 312–313, 325
erosion risk, 356–357, 356–358
eutrophication, 276–277, 526
fertilizer use, 327–330, 328–330, 329
fish consumption and production, 339–342, 341
fisheries, 271–275, 369
food production, 331–338, 501
freshwater biodiversity, 392–398
freshwater resources, 344–353, 346–349
genetic resources, 353–354
greenhouse gas emissions, 314–315, 315, 525
Gulf of Mexico agriculture and hypoxia, 279–283
human well-being, 267–269, 409–429, 426, 458
474, 535–536
invasive species, 399, 399, 399, 426, 426, 456
irrigation efficiency, 366–367
land use or land cover change, 322–327, 324–327, 528
mining and fossil fuel extraction, 330
ornamental resources, 354
outcomes for ecosystem services and human well-being (2050 compared with 2000), 9
pollution, 359–360
population size, 305–306
private-sector response strategies and options, 512, 512–513, 514
provisioning services, 330–354, 362–363
regulating services, 354–360, 362–363
sea level rise, 322, 323
sociopolitical drivers of change, 312
supporting ecosystem services, 360
Education
Adapting Mosaic scenario, 246–247
as sociopolitical driver, 192
El Niño-Southern Oscillation (ENSO), 58, 96
Endangered Species Act (U.S.), 63
Endangered species in Demilitarized Zone between North and South Korea, 261
Energy
biofuels, 344
integrated assessment models and, 105–106
intensity changes, 519
Millennium Development Goals and, 493
productivity and, 186–187, 188
use and production, 312–313, 312–313, 525
Engel’s law, 183
Environmental outlook (OECD), 41
Environmental refugees, 181
Erosion. See Soil degradation
Euphrates–Tigris Integrated Watershed Management Project in Adapting Mosaic scenario, 249
European colonization and spread of disease, 33
European Union (EU) food production and demand projections, 82
Eutrophication, 318–320, 533
biodiversity loss and, 391–392, 395–397, 463
comparison across scenarios, 276–277, 526
models to predict ecosystem and policy-relevant impacts, 88–89, 90
Evolutionary theory, 52, 58
EwE (Ecopath with Ecosim) software, 368
description of, 163–166, 167–169
Extinction of local species. See Biodiversity, future of
Extreme events. See also Disturbance; Surprise differences in scenarios due to, 6, 6–7, 139–140, 139–140, 286–287, 287
F
Failed states, 260
FAO. See Food and Agriculture Organization
FAPRI (Food and Agriculture Policy Research Institute), 81–83. See also IMPACT (International Model for Policy Analysis of Agricultural Commodities and Trade) model
Feedbacks. See specific type
Fertility changes, 178–179, 182, 305
Fertilizers, application of
as driver of change, 175, 202–207
ecosystem consequences of, 28, 205–206
in scenarios, 207, 327–330
phosphorus use and trends, 204, 204–205, 206, 524
potassium use and trends, 205, 205, 206
impact on local and regional climates, 77–81
nitrogen cycle, 90–94
water quality and phosphorus cycling, 87–90
Forest area. See also Deforestation
China’s policy on, 51
future of, 11, 11, 325
property rights, effect of, 63
Tanzania common forest resources, 415
Fossil fuel use, 330
Fragmentation, 57, 474. See also Order from Strength scenario
Freedom of choice and human well-being, 28, 269, 421–422
Freshwater biodiversity, 392–398
acidification and, 395–397
description of Freshwater Biodiversity Model, 169–170, 170
development of, 155
effects of drivers and human well-being, 398
eutrophication and, 395–397
forecasting loss, 394–395
hot spots and Ramsar sites, 397–398
multiple drivers and interactions, 398
qualitative approaches to forecasting change, 395
quantitative results for fish biodiversity, 396–398
quantitative results for fish biodiversity, 396, 397
temperature and, 396
Fuel. See Biofuels; Energy
FUND model, 106
Future assessments of ecosystem services, 15–16, 480–481
Future of ecosystem services. See Sustainability and the future
Gender equality and Millennium Development Goals, 493
Genetic resources, 353–354
Genetically modified organisms, 197–198, 237, 458
Global Assessment of Soil Degradation (GLASOD), 208
Global Environment Outlook (UNEP), 40, 106, 148, 328
Global Ocean Observatory Laboratory, 99
Global Ocean Observing System, 99
Global Orchestration scenario, 230–237
agricultural intensification, 333–335
agricultural uncertainty, 344
air pollution, 316–318, 476–477
benefits and risks of, 137–138, 138, 230, 286, 456
biocatalysts, 354
biodiversity, 265
culture change, 389–391, 477
combined threats, 477
freshwater biodiversity, 392–398
habitat loss, 381–387, 476, 502
marine biodiversity, 398–401
overexploitation, 476, 502
terrestrial biodiversity, 384–392
biofuels, 344
biological pest and disease control, 360
branch points for, 232
child malnutrition, 338
climate change, 275–276, 355, 389–391, 462, 499
coastal protection, 271, 359
cultural response strategies and options, 505, 509
crop area and livestock numbers growth, 365–366
cultural services, 423
diseases, emerging, 269–270
drylands, 267, 487–491
economic development, 308–309, 456
electricity use and production, 313
erosion risk, 356–358
eutrophication, 277
extreme events, 140
fertility rates, 305
fertilizer use, 328–330
fish consumption and production, 339–343
Indirect drivers. See Drivers of change
Infectious diseases. See also specific disease
ecology of emerging diseases, 53, 102, 464
comparison across scenarios, 269–270, 270
human-driven movement of, effect of, 175, 211–212
in failed states, 260
pandemic, 464
Information sharing in Adapting Mosaic scenario, 135
Institutional factors in scenarios, 152
Integrated assessment models (IAMs), 39, 102–107, 105, 463
Interactions among drivers and ecosystems, 29, 212–214, 431–448
case studies, 438–442
Interactive feedbacks, 50
Intergovernmental Panel on Climate Change (IPCC), 37, 80, 199, 320, 527. See also Special Report on Emissions Scenarios (SRES)
International Food Policy Research Institute (IFPRI), 81–83
International Institute for Applied Systems Analysis (IIASA), 304
International migration. See Immigration
Interventions
biodiversity losses, opportunities for, 402
MA assessment of, 32–33
Interviews with stakeholders, 3, 4, 121, 122–124, 124–125
Invasive species, 209–211, 401–402
comparison across scenarios, 277–279, 278
ecosystem consequences of, 209–211
Global Orchestration scenario, 132–133
Great Lakes water quality and, 441
human-driven movement of, effect of, 175, 209–211
Involuntary parks, creation of, 261
IPCC. See Intergovernmental Panel on Climate Change
Irreversibility, 434, 458, 461–464
Irrigation
area growth among scenarios, 336
basin-level efficiency, 366–367
use of water for, 14, 349–350
Island biogeography, 54–55
J
Jamaica fisheries and tourism, 439–440
Japan
economic acceleration in, 308
labor productivity in, 187
rice crop increases in, 203–204
Johannesburg Declaration, 460, 461, 494–500
Knowledge gaps
about robustness and resilience of ecosystems, 286
in ecological understanding, 59
in predicting cross-scale interactions, 287
Knowledge specialization, 192
Korea’s Demilitarized Zone, 261
Kuznets Curve. See Environmental Kuznets Curve
Kyoto Protocol, 474
L
Lakes. See Water resources
Lakeshore development in northern U.S., 439
Land cover change. See also Deforestation
as driver of change, 49, 175
comparison across scenarios, 322–327, 324–327
forecasting, 74–76
impact of changes on local and regional climates, 77–81
Land use change. See also Agriculture; Deforestation;
Urban growth and urbanization
as driver of change, 207–209, 458
agricultural conversion, 208–209
biological invasions and ecosystem consequences, 209–211
deforestation, 207–208
diseases and ecosystem consequences, 211–212
dryland degradation, 208
urbanization, 209
biodiversity, effect on, 377, 458
comparison across scenarios, 322–327, 324–327, 528
difficulty in modeling of, 80
drivers of, 212–213, 300
forecasting, 74–76
future demand for, 11, 11
importance of, 450, 451, 458
trade-off with biodiversity, 435–436
Landmines, 193
Landscape ecology, 56–57, 58
Latin America’s transportation innovation in
The Limits to Growth, 226, 284.
Lessons learned from scenario analysis, 449–467
Lobster fishing in Maine, 441, 446
Luching learning, 61
M
MA. See Millennium Ecosystem Assessment
Macroevolutionary theory, 52
Maine lobster fishing, 441
Malana, 53, 101, 250, 464
Malnutrition rates, 10, 10, 338, 359, 368, 423, 499
Marine biodiversity, 379, 398–401. See also Freshwater biodiversity
Benguela current model, 400
Central North Pacific model, 400–401
change across scenarios, 399–401
Gulf of Thailand model, 399–400
modeling changes in, 155
Markets for ecological management, 62
Material needs and human well-being, 28, 267–269, 413–416
Materials requirements for productivity, 186–187, 188
Maximum sustained yield (MSY), 60
MDGs. See Millennium Development Goals
Meat, increased demand for. See Food demand and production
Microevolutionary theory, 52, 58
Middle East
as hot spot region, 363
comparison across scenarios, 363
food import dependence in, 300
Midwest Organic Agriculture Project in Adapting Mosaic scenario, 250
Migration. See Immigration
Millennium Development Goals (MDGs)
implication for national governments and, 492–494
policy reform and, 42
prospects for reaching, 471
scenarios in relation to, 14, 460–461
specific goals of, 492–493
trade-offs to achieve, 438
Millennium Ecosystem Assessment (MA)
assessment tools for, 31–32
assessments as part of, xiv, xv
goals of, 47
reporting categories of, 26, 27
Mining
cosmic fuel extraction and, 330
Zambia mine effluent remediation by natural wetlands, 440, 442, 443, 446
Mississippi River drainage. See Gulf of Mexico
agriculture and hypoxia
MIT’s Integrated Assessment Model, 106
Modeling, 31, 71–115, 367–368. See also Forecasting; Scenarios; specific models
biodiversity and, 154–155, 454
criticism of early global environmental modeling, 62
EWE (EcoPath with Ecosim) software, 163–166
food demand and supply, 81–84
integrated assessment approaches, 454–455, 454–455
integrations and trade-offs, assessment of, 454
path-dependency and irreversibility, 462
policy, planning, and development frameworks, 459–464
replacement of some ecosystem services, 454, 458
robust findings, 457–458
scenario development process, 452–454
sustainability requiring mixed scenarios, 456
The Limits to Growth (Meadows et al.), 62
Lobster fishing in Maine, 441, 446
Local solutions and effect on global problems, 49, 50, 226, 284. See also Community implications
Monitoring, advantages of, 14
Montreal Protocol, adoption of, 51
Mortality, 179–180, 182, 228, 305
MSY (Maximum sustained yield), 60
Narrative-based scenarios, 42–43, 43. See also Development of scenarios
prior to 1995, 38
agricultural intensification, 333–335, 529
agricultural uncertainty, 344
air pollution, 316–318, 476–477
benefits and risks of, 138, 139, 239, 286, 456–457
beyond 2050, 244
biochemical discoveries, 354
biodiversity, 15, 265, 377
climatic change, 389–391
combined threats, 477
freshwater biodiversity, 392–398
habitat loss, 381–387, 476, 502
marine biodiversity, 398–401
overexploitation, 476, 502
terrestrial biodiversity, 384–392
biofuels, 344
biological pest and disease control, 360
child malnutrition, 338
climate change, 276, 320–322, 355, 389–391, 499
coastal protection, 359
community response strategies and options, 505, 509
crop area and livestock numbers growth, 365–366
cultural services, 424
diseases, emerging, 270
drylands, 267, 487–491
economic development, 308–309, 456
energy use and production, 313
erosion risk, 356–358
eutrophication, 277
extreme events, 139
failed states and pirate zones, 260
fertility rates, 305
fertilizer use, 328–330
fish consumption and production, 339–343
fisheries, 244, 273–274
food demand, 332–333
food production, 331–332, 501
forest area, future of, 11, 11, 325
freshwater resources, 346–353
genetic resources, 353–354
Global Orchestration becoming, 427
greenhouse gas emissions, 315, 463
Gulf of Mexico hypoxia, 279–283
human well-being, 425, 427, 456, 474
invasive species, 277
community implications, 503–504
food demand, 332–333
food production, 331–332, 501
forest area, future of, 11, 11, 325
freshwater resources, 346–353
headers, 244, 273–274
human well-being, 245, 427, 456, 474
invasive species, 277
involuntary parks, creation of, 261
irrigation area growth, 336
irrigation efficiency, 366–367
land use or land cover change, 323–327, 528
largest quality decrease in ecosystems in, 267, 300, 456–457
migration rates, 305
mining and fossil fuel extraction, 330
mistrust of global institutions, 473–474
mortality rates, 505
NGOs and, 508, 509
outcomes for ecosystem services and human well-being (2050 compared with 2000), 9
policy-making for, 473–474
pollination, 359–360
population size, 305–307
private-sector implications, 512–513
private-sector response strategies and options, 512–513
provisioning and regulating services, 362–363, 423
reactive policies of, 227, 436, 456
socio-political drivers of change, 312
supporting ecosystem services, 360
surprise, 365, 424–425
synopses of, 121, 128, 133–134, 225
technology, 310–311
trade and food prices, 337–338
trade-offs between ecosystem services, 363, 436–437, 444, 474
transitioning into another scenario, 141, 141–142
unsustainability of, 226, 287, 457
water purification, 358–359
wetlands, 265, 267, 484–487
years 2000–15 and fragmentation, 238–240
years 2015–30, 240–243
economic fragmentation, 240–241
environmental decline, 242–243
health and safety, 241
new trading blocs, 241–242
sanctions on poor countries, 241
tourism and security, 241
years 2030–50, 243–244
declying ecosystem services, 243
downward cycles, 243–244
economic performances, 243
Organisation for Economic Co-operation and Development
energy and productivity, 186, 187
Environmental Outlook, 41
food demand and supply projections, 81–83
on productivity increases, 187
per capita GDP growth, 186
technology and productivity, 196
Organisms
bioengineered. See Genetically modified organisms
movement of. See Invasive species
Ornamental resources, 354
Ozone layer, 51, 62

P
Patch dynamics, 55–56
Path-dependency, 462
Percolation theory, 56
Pest control. See Biological pest and disease control
Phosphorus. See also Fertilizers, application of
cycling and water quality, 87–90
transport models, 87–88, 89–90
use and trends, 204, 204–205, 523
Pirate zones, 250
Plant diversity. See Biodiversity, future of
Plant nutrients. See Fertilizers, application of
Polestar model, 104, 105

0
Opportunities for intervention, 402
Order from Strength scenario, 237–244
acidification, 319–320

National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, 84
National government implications, 472, 491–501
economic growth and, 500–501
food production and, 500–501
food security and, 500–501
long-term implications for Johannesburg Declaration, 494–500, 495–498
medium-term implications for MDGs, 492–494
security concerns and, 500
stable government structures and, 500–501
National Research Council of the U.S. National Academy of Sciences, 84
National security
economic growth and, 500
Order from Strength scenario and, 133, 134, 228
scenarios that focus intensively on, 226, 284
Natural capitalism and TechnoGarden scenario, 136, 474
Natural disasters. See also Surprise
Adapting Mosaic scenario and, 135
New York City and drinking water quality, 446
New Zealand Resource Management Act and Treaty of Waitangi, 504
NGOs. See Nongovernmental organizations
Nitrogen cycle. See also Eutrophication
biodiversity, effect on, 391–392, 392–393, 396–397
export in rivers, modeling of, 91–92
feedback between nitrogen and key ecosystem processes, 92–93
forecasting changes in, 90–94
ocean and coastal biogeochemistry models, 92
terrestrial process-based models, 91
transport models, 91–92
Nitrogen oxides emissions, 317, 319
Nitrogen use. See Fertilizers, application of
Non-utilitarian value paradigm, 31
Nongovernmental organizations (NGOs), 192, 461, 472, 506–508
biodiversity loss and overexploitation, 506–507
human health and well-being, 506, 507
interactions with communities and other response actors, 509–510
priorities for near-term and long-term responses, 506–508
provisioning and regulating ecosystem services, 506, 507
Nonlinear feedbacks, 50
Nonrenewable resources and trade-offs, 433
Norms, cultural, 195
North Benguela
canadian biodiversity model, 399, 400
North Pacific Ocean regime shift in marine ecosystems, 463
Northern Africa
climate change in, 462
food import dependence in, 300
Policy synthesis for stakeholders, 459, 469–515
Political drivers of change, 312. See also Sociopolitical drivers of change
Pollination, 359–360
Population growth, 175, 176–182, 177, 182, 304–307
aging of population, 306–307
assumptions, 305–306
current conditions, 176–178, 177
ecosystem consequences of, 181–182
fertility changes, 178–179
in scenarios, 152, 182, 182, 229
international migration, 180–181
mortality decline, 179–180
Potassium use. See Fertilizers, application of
Poverty-wealth gap
agricultural advancements and, 198
ecosystem degradation and, 23
environmental improvements linked to poverty reduction, 126
food consumption and, 500
human well-being and poverty reduction, 28–29
Millennium Development Goals to reduce. See Millennium Development Goals
Order from Strength scenario and, 133–134, 227, 274, 500
reliance of the poor on ecosystems, 47, 284
unequal access to ecosystem services, 28
Prediction, 57–58. See also Scenarios
Private-sector implications, 192, 461, 472, 510–513
biodiversity change and, 511
drivers of change in ecosystem services, 511
ecosystem function change and, 511
linkages and stakes, 510–511
response strategies and options in scenarios, 512, 512–513, 514
Productivity
agriculture, 367
innovation and technological change, 196
Progressive governance, 192
Property rights, effect of, 63
TechnoGarden scenario and, 136
Provisioning services. See also specific type (e.g., food production)
community implications, 502–503
comparison across scenarios, 330–354, 362–363, 458
defined, xii, 25
focus on, effect of, 14, 15
future demand for, 10, 300, 302–303
human well-being and, 416, 422–423
NGOs and, 506, 507
trade-offs, 436
Public participation in decision-making, 28, 191–192
Q
Qualitative and quantitative analysis
in assessment, 4, 40, 40
in scenario development, 147, 148, 454
trade-offs, cautions of using, 445
R
Rainfall, 200, 321–322, 526. See also Climate change difficulty in modeling of, 80
RAINS (Regional Acidification Information and Simulation) model, 104
Ramsey Convention on Wetlands, 22, 482–487
Convention Scorecard on threats to biodiversity in scenarios, 266
prospects for, 471, 486–487, 486–487
request for information from, xiii
scenario usefulness to, 460
threats to wetlands in scenarios, 484–486, 485
Recycling and biotic effects models, 88–89
Reductionist approaches to science, 102
Reefs, change from coral to algal, 199
Regional disaggregation, 39
scenario focusing on, 128, 134, 228. See also Adapting Mosaic scenario
Regionalization, effect of, 4, 226
scenarios focusing on, 121, 128. See also Order from Strength scenario
Regulating services, 302–303. See also specific type (e.g., air quality)
community implications, 502–503
comparison across scenarios, 354–360, 362–363
defined, xii, 25
human well-being and, 416, 423
NGOs and, 506, 507
trade-offs, 363–364, 436
Religious drivers of change. See Cultural and religious drivers of change
Resilience
as ecology management approach, 60–61
defined and explained, 231
ecosystem services and, 127
Resources Working Group, xvi
Rinderpest virus, 211
Risk and human well-being, 412–413
Risk assessment, 32–33
River blindness, 47
Rivers, 377. See also Water resources
Roads, effect of, 57
ROMS (Regional Ocean Modeling System), 99
Royal Dutch/Shell use of scenario analysis, 37
S
St. Lucia no-take zones, 440–441
Salinization of drylands in Australia, 442, 444
Salmon, farmed, 56
SARS, 269, 464
Scenarios, 45–70. See also Adapting Mosaic scenario; Global Orchestration scenario; Order from Strength scenario; TechnoGarden scenario
analytical typology of, 452, 452
application of theory to, 64, 65
benefits and risks across, 137–139, 138, 285, 286, 480
breakdowns of ecosystem services in, 159, 139–140
characteristics of, 227
combining for advantageous approaches, 14, 16–17
consequences of possible changes in development paths, 284–285
contrasts among, 3, 3, 122, 129–131, 265–283, 456. See also Cross-cutting comparisons among scenarios
defined, xii, 2, 147
development of. See Development of scenarios
drivers of change and, 125–126, 361–362
ecological management dilemmas and, 124–125
gaps in knowledge and, 286
historical perspective. See Historical perspective for scenarios
integrated approach to, 39, 39
issues to be addressed by, 122–126
lessons learned from, 452–454. See also Lessons learned from scenario analysis
linkage with quantitative modeling, 228–230
monitoring, advantages of, 14
multiple futures for, 39
multiple pathways to outcomes, 300
outcomes for ecosystem services and human well-being (2050 compared with 2000), 9
overview of, 126–129
purpose of using, 32, 48–52, 121, 148, 450, 451, 454
quantification and narrative requirements for, 40
rationale and overview, 119–143
robust findings across, 285
storylines. See Development of scenarios
theories and ideas relevant for, 52–59
transitions among, 122, 140–142, 141, 427, 450
uncertainty and, 285–286
user needs and core questions for, 122–123, 152, 283–287
value of, 51–52
Scenarios Working Group, xvi, 129
Schistosomiasis, 48
Science and technology drivers, 195–199
agricultural science and, 196–199, 197
ecosystem consequences of, 199, 458, 464
in scenarios, 199
innovation and technological change, 196, 458
Scientific Committee on Ocean Research workshop, 199
Sea level rise, 200, 322, 323, 462. See also Climate change
Security and human well-being, 28, 419–421
Sensitivity analysis, 156
Shrimp in lakes of Columbia River Basin, 54
SimCoast, 100
Smuggling and failed states, 260
Snails and schistosomiasis, 48
Social learning, 61–62
Social relations and human well-being, 28, 419–421
Social surprise. See Surprise
Socioeconomic context of ecology, 59–62
adaptive management and, 61
command and control, 59, 60
managing for resilience, 60–61
scenarios and, 461
social learning and, 61–62
uncertainty and control, 59–60, 60
Sociopolitical drivers of change. 191–194, 312, 312
dispute resolution, 192
ecosystem consequences of, 192–194
education and knowledge and, 192
in scenarios, 194
public participation in decision-making, 28, 191–192
role of state relative to private sector, 192
war and ecosystem services and human well-being, 193
Soil degradation, 355–358, 356–357
South Africa
blackfly Simulium clurteri, 47
Working for Water program, 504
South Asia
as hot spot region, 363
comparison across scenarios, 363
South Korea
economic acceleration in, 308
endangered species in Demilitarized Zone, 261
Southern Africa
in Adapting Mosaic scenario, 254, 256
in Global Orchestration scenario, 237, 238
Southern African Millennium Ecosystem Assessment, 228
Southern African Sub-global Assessment, 213
Spatial scales
ecosystem service interactions and, 434
linkages with temporal scales, 150–151, 151, 453
Spatial trade-offs, 444–445
Special Report on Emissions Scenarios (SRES), 40, 41, 42, 43, 49, 58
energy use assumptions from, 312
focus of, 466
MEER-based income projections used in, 307
models used in, 106, 107
projected climate changes, 201
qualitative and quantitative scenarios combined in, 148
Species abundance and ecosystem function, 403, 404
Spruce budworm, 53
SRES. See Special Report on Emissions Scenarios
Stakeholders. See also Decision-making process
importance of, 24
interactions between communities, NGOs, and other response actors, 509–510
interviews with, 3, 4, 121, 122–124, 124–125
policy synthesis for, 459, 469–515
scenarios’ usefulness for, 459–461
Storylines. See Development of scenarios
Sub-global assessments and multiscale scenario development, 170–171, 171
Sub-Saharan Africa
environmental refugees in, 181
in Adapting Mosaic scenario, 253
in Global Orchestration scenario, 237
in Order from Strength scenario, 242, 245
in TechnoGarden scenario, 259
rapid changes in scenarios, 300
rinderpest virus in, 211
scenarios focused on conditions in, 228
water use increases, 300
Substitution processes, 55–56
Sulfur dioxide emissions, 316, 318, 476–477
Supporting ecosystem services, 360, 416
comparison across scenarios, 458
policy-makers ignoring, 433, 443–444
trade-offs and, 436
Surprise
ability to cope with, 226
cclimate, ecology, and carbon, 49
defined, 39
global environmental surprise as result of local focus, 226
Global Orchestration scenario and, 132–133
social surprise
distinguished from ecological surprise, 412
human well-being and, 411, 412, 424–425
Sustainability and the future, 10–12, 23, 28, 36–37, 47, 48, 122
Johannesburg Declaration and, 494–500, 495–498
Millennium Development Goals and, 471–472, 493
technology and engineered ecosystems, 225–226, 456–457
Synergism, 433–434, 445
T
Tanzania and forest resources management, 415
TARGETS model, 104–105
Taxes and subsidies, effect of, 175
TechnoGarden scenario, 254–264
acidification, 319–320
agricultural intensification, 333–335
agricultural uncertainty, 344
air pollution, 316–318, 477
benefits and risks of, 138, 138–139, 257, 286, 457
biochemical discoveries, 354
biodiversity, 265, 377
cclimate change, 389–391
combined threats, 477
cclearfixwater biodiversity, 392–398
habitat loss, 381–387, 476
marine biodiversity, 398–401
overexploitation, 476, 502
terrestrial biodiversity, 384–392
biofuels, 344
biological pest and disease control, 360
challenges 2050–2100, 264
child malnutrition, 338
cclimate change, 276, 320–322, 353, 389–391, 462, 499
costal protection, 359
community response strategies and options, 505–506, 509
crop area and livestock numbers growth, 363–366
cultural drivers of change and, 195
cultural services, 423–424
diseases, emerging, 271
drylands, 267, 487–491
economic development, 308–309, 457
energy use and production, 313
erosion risk, 356–358
eutrophication, 277
extreme events, 140
fertility rates, 305
fertilizer use, 328–330
fish consumption and production, 340–343
fisheries, 275
food demand, 333
food production, 331–332, 501
freshwater resources, 346–353
genetic resources, 353–354
genetically modified organisms, 257
greenhouse gas emissions, 315
Gulf of Mexico hypoxia, 279–283
human well-being, 427–428, 456, 474
community implications, 503–504
freedom and choice, 269, 422
health, 269, 418
material needs, 267–269, 415–416
social relations and security, 269, 421
invasive species, 278–279
involuntary parks, creation of, 261
irrigation area growth, 336
irrigation efficiency, 367
land use or land cover change, 323–327, 528
migration rates, 305
mining and fossil fuel extraction, 330
mortality rates, 305
natural capitalism, 136, 474
NGOs and, 508, 509
outcomes for ecosystem services and human well-being (2050 compared with 2000), 9
policy-making for, 474
pollination, 359–360
population size, 305–307
private-sector response strategies and options, 513
proactive policies of, 227, 436, 456
provisioning and regulating services, 362–363, 423
purposes of, 5, 6, 121
sea level rise, 322
sociopolitical drivers of change, 312
supporting ecosystem services, 360
surprise, 365, 424–425
synopses of, 121, 128, 133–137, 225
technology, 310–311, 474
trade and food prices, 337–338
trade-offs between ecosystem services, 438, 474
transitioning into another scenario, 141, 142
water purification, 359
wetlands, 484–487
years 2000–15, 255–258
green revolution, 255–256
isolated islands and globalization, 258
transportation innovation in Latin America, 256–258, 259
years 2015–30, 258–262
consolidation of globalization, 258–261
green design and ecological agriculture, 262
urban eco-development, 261–262
years 2030–50, 262–263
eo-technology, 263
eo-urbanism, 263
technocrats’ role, 262–263
year 2050, 263–264
year 2050–2100, 264
Technology. See also Science and technology drivers agricultural. See Agriculture
in scenarios, 152, 309–311, 311, 461
innovation and change, 196
Order from Strength scenario and, 134
scenario focusing on, 128. See also TechnoGarden
scenario
Temperature change. See Climate change
Temporal scales
ecosystem service interactions and, 434
linkages with spatial scales, 150–151, 151, 453
Temporal trade-offs, 444
Terrestrial biodiversity, 380–392. See also Convention on Biological Diversity (CBD)
atmospheric deposition and, 391–392, 392–393
biome shifts and, 390–391, 391
climate change and, 387–391, 391, 393
comparison across scenarios, 384–392
description of Terrestrial Biodiversity Model, 166–169, 169
global species losses, estimating, 382
IMAGE and, 380
integrating environmental pressures on, 392, 393–394
local species losses, estimating, 377, 382
loss of species through loss of habitat, 12–13, 13, 377, 378–383, 385–386, 393, 397, 476
modeling changes in, 154–155
plant diversity as determined by climate patterns, 530
species-area relationship (SAR) and, 380–381, 392
tick diversity in Africa, 390, 391
uncertainties in extinction predictions, 382–384, 385–386, 393, 397
vascular plants, 381–382, 381–382, 384
loss through loss of habitat, 385–387, 387–389
Theories and ideas relevant for scenarios, 52–59
application of theories, 58–59, 64
community ecology and, 54–56
disturbance, succession, and patch dynamics, 55–56
evolutionary theory, 52
food webs, bioaccumulation, and trophic cascades, 56
hierarchy theory, 52–54
island biogeography, 54–55
knowledge gaps, 47, 59
landscape ecology and ecosystem ecology, 56–57
prediction, forecasting, and uncertainty, 57–58
systems approaches, 56–57
3E models, 106
Tick diversity in Africa, 390, 531
Time scale of assessments, 30, 39, 151, 450, 453–454
TOMS (Terrain-following Ocean Modeling System), 99
Tourism
Adapting Mosaic scenario and, 135, 252
as economic driver, 189–191
ecological impacts of, 190, 213–214, 476
spread of disease and, 53
Trade
Adapting Mosaic scenario and, 134
food prices and, 337–338, 338
Global Orchestration scenario and, 132
income growth and, 184
liberalization, effect of, 4, 175, 186
species introductions and, 377–378, 402, 402
Trade-offs, 13–14, 47, 300, 431–448
case studies, 438–442, 442
choice of ecosystem service trade-offs, 443
classification of, 433, 434, 434
comparison across scenarios, 363–364, 433, 442–445, 474
defined, xxii, 434
lessons learned and, 454
slowly changing factors and, 6, 443–444
spatial, 444–445
temporal, 444
unknown and unanticipated, 443
Traditional knowledge, use of, 32
Transformation learning, 62
Trophic cascades, 56, 61
Tropical deforestation, 212–213
U
Uganda, phosphorus use and trends in, 205
Uncertainty, 39, 57–58. See also Surprise
comparison across scenarios, 364–365
control and, 59–60, 60
development of scenarios and, 155–156, 156
examples of deep uncertainties, 453
marine populations and, 96–97
of agricultural estimates, 343–344
of extinction predictions, 382–384, 383
of water availability estimates, 351–352
scenarios and, 285–286, 324
United Kingdom
fertilizer use and trends in, 205, 206
invasion of non-native plant species, 211
United Nations
Agenda 21, 42, 208
Convention on Biological Diversity. See Convention on Biological Diversity (CBD)
Convention on Desertification. See Convention to Combat Desertification
Environment Programme, 186. See also Global Environment Outlook
Food and Agriculture Organization. See Food and Agriculture Organization (FAO)
population scenarios developed by, 304
United States. See also U.S. Department of Agriculture (USDA)
Endangered Species Act, 63
energy and productivity, 187
fertilizer use in, 440, 443
lakes in Midwest and management for resilience, 61
lakeshore development in, 439
water quality and biological invaders in, 441
Urban growth and urbanization
as driver of change, 209
comparison across scenarios, 279, 279–280
ecosystem consequences of, 213
food consumption and, 183
spread of disease and, 53
U.S. Department of Agriculture (USDA), 81–83
Utilitarian value paradigm, 30–31
V
Value
associated with ecosystem services, 30–31, 31, 63
of ecological scenarios, 51–52
Vascular plants. See Terrestrial biodiversity
Vertical integration, 103
Volition, 39
Vulnerability and human well-being, 411, 412–413, 424–425, 466. See also Surprise
Vulture declines in India, 439
W
War and conflicts, effect of, 192, 193
Order from Strength scenario and, 425
Water purification, 358–359. See also Drinking water quality
Water resources
biodiversity loss and, 392–398. See also Freshwater biodiversity
canopy expected in, 300
comparison across scenarios, 345–353, 346–349
drinking water. See Drinking water quality
eutrophication models, 88–89, 90. See also Eutrophication
fertilizer application’s effect on, 13, 14
forcasting changes in quality in, 87–90
future demand for, 10, 11, 344–353
inversely related with agricultural production, 435
phosphorus cycling and water quality, 87–90
purification, 358–359
recycling and biotic effects models, 88–89
return flows and water quality, 348–351, 351
uncertainty of estimates for, 351–352
Water stress, 347–348, 349
WaterGAP (Water Global Assessment and Prognosis) model, 153–154, 394
description of, 160–161, 162–163
Wealth-poverty gap. See Poverty-wealth gap
Well-being. See Human well-being
Wetlands, future of, 12, 265–267, 287, 288–291, 398, 476
trade-offs, 440, 442, 446
Wetlands Convention. See Ramsar Convention on Wetlands
White pox disease, 211
Women’s rights and Millennium Development Goals, 493
Working for Water program (South Africa), 504
World Bank food production and demand projections, 82–83
World Business Council for Sustainable Development, 40–41, 43
World Commission on Environment and Development report (1987), 187
World Health Organization, 416
World Summit on Sustainable Development, 475, 494. See also Johannesburg Declaration
World Tourism Organization, 190
World Trade Organization, 239, 474
World Water Vision, 41, 148
Z
Zambia mine effluent remediation by natural wetlands, 440, 442, 443, 446
Zebra mussel invasion, 210, 441, 445
Island Press Board of Directors

Victor M. Sher, Esq. (*Chair*), Sher & Leff, San Francisco, CA

Dane A. Nichols (*Vice-Chair*), Washington, DC

Carolyn Peachey (*Secretary*), Campbell, Peachey & Associates, Washington, DC

Drummond Pike (*Treasurer*), President, The Tides Foundation, San Francisco, CA

Robert E. Baensch, Director, Center for Publishing, New York University, New York, NY

David C. Cole, President, Aquaterra, Inc., Washington, VA

Catherine M. Conover, Quercus LLC, Washington, DC

Merloyd Ludington, Merloyd Lawrence Inc., Boston, MA

William H. Meadows, President, The Wilderness Society, Washington, DC

Henry Reath, Princeton, NJ

Will Rogers, President, The Trust for Public Land, San Francisco, CA

Alexis G. Sant, Trustee and Treasurer, Summit Foundation, Washington, DC

Charles C. Savitt, President, Island Press, Washington, DC

Susan E. Sechler, Senior Advisor, The German Marshall Fund, Washington, DC

Peter R. Stein, General Partner, LTC Conservation Advisory Services, The Lyme Timber Company, Hanover, NH

Diana Wall, Ph.D., Director and Professor, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO

Wren Wirth, Washington, DC